MO Diagrams for More Complex Molecules

Chapter 5

Friday, October 16, 2015

BF₃ - Projection Operator Method

2p_y:

2p_x:

2p_z:

A₁'

BF₃ - Projection Operator Method

Boron trifluoride

F 2s is very deep in energy and won't interact with boron.

Boron Trifluoride

d orbitals

- l = 2, so there are 2l + 1 = 5 *d*-orbitals per shell, enough room for 10 electrons.
- This is why there are 10 elements in each row of the *d*-block.

σ-MOs for Octahedral Complexes

1. Point group O_h

The six ligands can interact with the metal in a sigma or pi fashion. Let's consider only sigma interactions for now.

σ-MOs for Octahedral Complexes

3. Make reducible reps for sigma bond vectors

					"							
O_h	Ε	8 <i>C</i> ₃	$6C_2$	6 <i>C</i> ₄	$3C_2(=C_4^2)$	i	$6S_4$	8 <i>S</i> ₆	$3\sigma_h$	$6\sigma_d$		
A_{1g}	1	1	1	1	1	1	1	1	1	1		
A_{2g}	1	1	-1	-1	1	1	-1	1	1	-1		
E_g	2	-1	0	0	2	2	0	-1	2	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$
T_{1g}	3	0	-1	1	-1	3	1	0	-1	-1	(R_x, R_y, R_z)	
T_{2g}	3	0	1	-1	-1	3	-1	0	-1	1		(xy, xz, yz)
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A_{2u}	1	1	-1	-1	1	-1	1	-1	-1	1		
E_u	2	-1	0	0	2	-2	0	1	-2	0		
T_{1u}	3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)	
T_{2u}	3	0	1	-1	-1	-3	1	0	1	-1		
											_	
O_h	Ε	8 <i>C</i> ₃	$6C_2$	6 <i>C</i> ₄	$3C_2(=C_4^2)$	i	$6S_4$	8 <i>S</i> ₆	$3\sigma_h$	$6\sigma_d$		
Γ_{σ}	6	0	0	2	2	0	0	0	4	2		

TABLE 10.4 Character Table for O_h

4. This reduces to: $\Gamma_{\sigma} = A_{1g} + E_{g} + T_{1u}$ six GOs in total

σ-MOs for Octahedral Complexes

5. Find symmetry matches with central atom. $\Gamma_{\sigma} = A_{1q} + E_{q} + T_{1u}$

O_h	Е	8 <i>C</i> ₃	$6C_2$	6 <i>C</i> ₄	$3C_2 (= C_4^2)$	i	$6S_4$	8 <i>S</i> ₆	$3\sigma_h$	$6\sigma_d$		
A_{1g}	1	1	1	1	1	1	1	1	1	1		
A_{2g}	1	1	-1	-1	1	1	-1	1	1	-1		
E_g	2	-1	0	0	2	2	0	-1	2	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$
T_{1g}	3	0	-1	1	-1	3	1	0	-1	-1	(R_x, R_y, R_z)	
T_{2g}	3	0	1	-1	-1	3	-1	0	-1	1		(xy, xz, yz)
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A_{2u}	1	1	-1	-1	1	-1	1	-1	-1	1		
E_u	2	-1	0	0	2	-2	0	1	-2	0		
T_{1u}	3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)	
T_{2u}	3	0	1	-1	-1	-3	1	0	1	-1		

TABLE 10.4 Character Table for O_h

Reading off the character table, we see that the group orbitals match the metal *s* orbital (A_{1g}), the metal *p* orbitals (T_{1u}), and the d_{z2} and d_{x2-y2} metal *d* orbitals (E_{g}). We expect bonding/antibonding combinations.

The remaining three metal *d* orbitals are T_{2g} and σ -nonbonding.

We *can* use the projection operator method to deduce the shape of the ligand group orbitals, but let's skip to the results:

 $\begin{array}{ll} \underline{L_6} \mbox{ SALC} & \underline{symmetry \ label} \\ \sigma_1 + \sigma_2 + \sigma_3 + \sigma_4 + \sigma_5 + \sigma_6 & A_{1g} \ (non-degenerate) \\ \sigma_1 - \sigma_3 \ , \ \sigma_2 - \sigma_4 \ , \ \sigma_5 - \sigma_6 & T_{1u} \ (triply \ degenerate) \\ \sigma_1 - \sigma_2 + \sigma_3 - \sigma_4 \ , \ 2\sigma_6 + 2\sigma_5 - \sigma_1 - \sigma_2 - \sigma_3 - \sigma_4 & E_g \ (doubly \ degenerate) \end{array}$

There is no combination of ligand σ orbitals with the symmetry of the metal T_{2q} orbitals, so these do not participate in σ bonding.

gma bonds with the L₆ se S = 0. T_{2g} are non-bonding 6. Here is the general MO diagram for σ bonding in O_h complexes:

Summary

MO Theory

- MO diagrams can be built from group orbitals and central atom orbitals by considering orbital symmetries and energies.
- The symmetry of group orbitals is determined by reducing a reducible representation of the orbitals in question. This approach is used only when the group orbitals are not obvious by inspection.
- The wavefunctions of properly-formed group orbitals can be deduced using the projection operator method.
- We showed the following examples: homonuclear diatomics, HF, CO, H_3^+ , FHF⁻, CO₂, H_2O , BF₃, and σ -ML₆