MO Diagrams for
More Complex Molecules

Chapter 5
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Boron trifluoride

F 2s is very deep in energy and won'’t interact with boron.

Orbital Potential Energy / eV
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Boron Trifluoride

-40.2 eV




d orbitals

«{ =2, sothere are 2¢{ + 1 = 5 d-orbitals per shell, enough room
for 10 electrons.

 This is why there are 10 elements in each row of the d-block.
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0-MOs for Octahedral Complexes

1. Point group O,

The six ligands can interact with the metal in a sigma or pi fashion
Let’s consider only sigma interactions for now.

7 \ ~ sigma , D@
< RS-

Sigma bonding interaction
between four ligand orbitals
and metal di_z _y2 orbital

Sigma bonding interaction
between two ligand orbitals

Pi bonding interaction
and metal d_z orbital

between four ligand orbitals
and metal d_ orbital



0-MOs for Octahedral Complexes

3. Make reducible reps for sigma bond vectors

TABLE 10.4 Character Table for O,

O, E 8C, 6C, 6C, 3C(=CH i 65, 85, 3o, 6oy

1

Ay | 1 1 1 1 | 1 1 1 1 1

Ay | 1 1 ~1 —1 | I -1 1 1 -1

E |2 -l 0 0 2 2 0 —1 2 0 2 =x =y, =y)
Iy | 3 -1 1 -1 301 -1 -1 |(R,R,R)

T, 3 1 -4 &3 3 - 0 —1 1 (xy, xz, ¥2)
A | 1 1 1 1 -1 -1 —1 —1 -1

Ay | 1 1 -1 = 1 -1 l —1 -1 1

E, |2 -l 0 0 2 -2 0 1 -2 0

T | 3 0o -1 -1 -3 - 0 1 @, y, 2)

= 1 '3 1 -1 -1 -3 1 1 -1

0, E 8C; 6C, 6C, 3C(=C/? i 65, 85, 30y, 604

I 0 0 2 2 0 0 0 4 2

4. Thisreduces to: I';=A,,+E +T,, sixGOs in total



0-MOs for Octahedral Complexes

5. Find symmetry matches with central atom. I'; = A,  +E_  + Ty,

TABLE 10.4 Character Table for o,
0, E 8C, 6C, 6C, 3C(=C>»H i 68, 85 3o, 60y

Ay | 1 1 1 | 1 | 1 1 1 1

Ay, | 1 1 —1 ~1 1 1 1 1 I ~1

E, 2 - 0 0 2 2 0 — 2 0 7 - -y, —y)
T,, | 3 0 -1 | —1 3 1 0 -1 -1 |(R.R.R)

T, 3 0 l — —1 3 - 0 —1 1 (xy, xz, ¥2)

A | 1 | [ 1 -1 -1 —1 ~1 -1

Ay, | 1 1 ~1 ~1 1 = 1 —1 ~1

E, | 2 -1 0 0 2 —2 0 1 —2 0

B |3 0 —1 1 —1 -3 - 0 1 1 | (xy2)

T 3 0 1 ~1 -1 -3 1 | —1

Reading off the character table, we see that the group orbitals match
the metal s orbital (A,,), the metal p orbitals (T,,), and the d,, and d,,_,,
metal d orbitals (E;). We expect bonding/antibonding combinations.

The remaining three metal d orbitals are T,, and o-nonbonding.



0-MOs for Octahedral Complexes

We can use the projection operator method to deduce the shape of the
ligand group orbitals, but let’s skip to the results:

L; SALC symmetry label
o,+0,+0;+0,+0;+ 0 A4q (non-degenerate)
0,-0;3,0,-0,,05-0g T,, (triply degenerate)

04-0,+0;3-04,204t+205-0,-0,-03-0, E,(doubly degenerate)

Metal Ligands (o) Metal Ligands (o)




0-MOs for Octahedral Complexes

There is no combination of ligand o orbitals with the symmetry of
the metal T,, orbitals, so these do not participate in o bonding.

T,4 orbitals cannot form
sigma bonds with the L; set.
S=0.

T, are non-bonding




0-MOs for Octahedral Complexes

6. Here is the general MO diagram for o bonding in O, complexes:

M

____ﬂlf_iﬂ;k '
S (A 2 2 52 2
_L_I'TL s B T, Ay,
i
A

MLB 6L (o donor)



Summary

MO Theory

- MO diagrams can be built from group orbitals and central atom
orbitals by considering orbital symmetries and energies.

- The symmetry of group orbitals is determined by reducing a
reducible representation of the orbitals in question. This approach
iIs used only when the group orbitals are not obvious by
inspection.

- The wavefunctions of properly-formed group orbitals can be
deduced using the projection operator method.

- We showed the following examples: homonuclear diatomics, HF,
CO, H3+, FHF-, 002, Hzo, BF3, and G'MLG



