Representations, Character Tables, and One Application of Symmetry

Chapter 4

Friday, October 2, 2015

Matrices and Matrix Multiplication

A matrix is an array of numbers, A_{ij}

To multiply two matrices, add the products, element by element, of each *row* of the first matrix with each *column* in the second matrix:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \times \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} (1 \times 1) + (2 \times 3) & (1 \times 2) + (2 \times 4) \\ (3 \times 1) + (4 \times 3) & (3 \times 2) + (4 \times 4) \end{pmatrix} = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \times \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 6 \end{pmatrix}$$

Each symmetry operation can be represented by a 3×3 matrix that shows how the operation transforms a set of *x*, *y*, and *z* coordinates

Let's consider C_{2h} {E, C_2 , i, σ_h }:

1,5-dibromonaphthalene

The set of four transformation matrices forms a <u>matrix representation</u> of the C_{2h} point group.

$$E: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad C_2: \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad i: \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \quad \sigma_h: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

These matrices combine in the same way as the operations, e.g.,

$$C_2 \times C_2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E$$

The sum of the numbers along each matrix *diagonal* (the <u>character</u>) gives a shorthand version of the matrix representation, called Γ :

C _{2h}	E	C ₂	i	σ _h
Γ	3	-1	-3	1

 Γ (gamma) is a <u>reducible representation</u> b/c it can be further simplified.

The transformation matrices can be reduced to their simplest units (1×1 matrices in this case) by block diagonalization:

$$E: \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} =$$

We can now make a table of the characters of each 1×1 matrix for each operation:

	C _{2h}	Ε	C ₂	i	σ_{h}	coordinate
tions	B _u	1	-1	-1	1	X
educik senta	B _u	1	-1	-1	1	У
repre	A _u	1	1	-1	-1	Z
	Г	3	-1	-3	1	

The three rows (labeled B_u , B_u , and A_u) are <u>irreducible representations</u> of the C_{2h} point group.

They cannot be simplified further. Their characters sum to give Γ .

The characters in the table show how each irreducible representation transforms with each operation.

1 = symmetric (unchanged); -1 = antisymmetric (inverted); 0 = neither

 A_u transforms like the z-axis: $E \rightarrow$ no change $C_2 \rightarrow$ no change $i \rightarrow$ inverted $\sigma_h \rightarrow$ inverted

 $A_{\rm u}$ has the same symmetry as z in C_{2h}

The characters in the table show how each irreducible representation transforms with each operation.

1 = symmetric (unchanged); -1 = antisymmetric (inverted); 0 = neither

*B*_u transforms like *x* and *y*: *E* → no change *C*₂ → inverted *i* → inverted σ_h → no change

The two B_u representations are exactly the same. We "merge" them to eliminate redundancy. The characters in the table show how each irreducible representation transforms with each operation.

1 = symmetric (unchanged); -1 = antisymmetric (inverted); 0 = neither

1,5-dibromonaphthalene

The two B_u representations are exactly the same. We "merge" them to eliminate redundancy. List of the complete set of irreducible representations (rows) and symmetry classes (columns) of a point group.

The first column gives the Mulliken label for the representation

- A or $B = 1 \times 1$ representation that is symmetric (A) or anti-symmetric (B) to the principal axis.
- $E = 2 \times 2$ representation (character under the identity will be 2)

irreducible representations

- $T = 3 \times 3$ representation (character under the identity will be 3)
- For point groups with inversion, the representations are labelled with a subscript g (gerade) or u (ungerade) to denote symmetric or anti-symmetric with respect to inversion.
- If present, number subscripts refer to the symmetry of the next operation class after the principle axis. For symmetric use subscript 1 and for anti-symmetric use subscript 2.

List of the complete set of irreducible representations (rows) and symmetry classes (columns) of a point group.

irreducible

• The last two columns give functions (*with an origin at the inversion center*) that belong to the given representation (e.g., the d_{x2-y2} and d_{z2} orbitals are A_g , while the p_z orbital is A_u).

Properties of Character Tables

C _{2h}	Ε	C ₂	i	σ_{h}	linear	quadratic
Ag	1	1	1	1	R _z	x², y², z², xy
$B_{ m g}$	1	-1	1	-1	R _x , R _y	xz, yz
A _u	1	1	-1	-1	z	
B _u	1	-1	-1	1	х, у	

- The total number of symmetry operations is the <u>order</u> (h). h = 4 in this case.
- Operations belong to the same <u>class</u> if they are identical within coordinate systems accessible by a symmetry operation. One class is listed per column.
- # irreducible representations = # classes (tables are square).
- One representation is totally symmetric (all characters = 1).
- *h* is related to the characters (χ) in the following two ways:

$$h = \sum_{i} [\chi_i(E)]^2 \qquad h = \sum_{R} [\chi_i(R)]^2$$

where *i* and *R* are indices for the representations and the symmetry operations.

• Irreducible representations are *orthogonal*:

$$\sum_{R} \chi_{i}(\mathbf{R}) \chi_{j}(\mathbf{R}) = 0 \quad \text{when } i \neq j$$

Example

Let's use the character table properties to finish deriving the C_{2h} table. From the transformation matrices, we had:

C _{2h}	E	C ₂	i	σ_h	coordinate
$B_{\rm u}$	1	-1	-1	1	х, у
A_{u}	1	1	-1	-1	z

There must be four representations and one is totally symmetric, so:

C _{2h}	E	C ₂	i	σ_h	coordinate
Ag	1	1	1	1	
?	?	?	?	?	
$B_{\rm u}$	1	-1	-1	1	х, у
A_{u}	1	1	-1	-1	z

The fourth representation must be orthogonal to the other three and have $\chi(E) = 1$.

The only way to achieve this is if $\chi(C_2) = -1$, $\chi(i) = 1$, $\chi(\sigma_h) = -1$, giving a B_g

Example

Let's use the character table properties to finish deriving the C_{2h} table. From the transformation matrices, we had:

C _{2h}	E	C ₂	i	σ_h	coordinate
$B_{\rm u}$	1	-1	-1	1	х, у
A_{u}	1	1	-1	-1	Z

There must be four representations and one is totally symmetric, so:

C _{2h}	E	C ₂	i	σ_h	coordinate	
A_{g}	1	1	1	1		
B_{g}	1	-1	1	-1		
$B_{\rm u}$	1	-1	-1	1	х, у	1
A_{u}	1	1	-1	-1	Z	

The fourth representation must be orthogonal to the other three and have $\chi(E) = 1$.

The only way to achieve this is if $\chi(C_2) = -1$, $\chi(i) = 1$, $\chi(\sigma_h) = -1$, giving a B_g

C_{3v} Character Table

The characters for A_1 and E come from the transformation matrices:

$$E: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad C_3: \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1/2 & -\sqrt{3}/2 & 0 \\ \sqrt{3}/2 & -1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \sigma_{v(xz)}: \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

rotation matrix about z-axis see website and p. 96
In block form:
$$E: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & [1] \end{bmatrix} \quad C_3: \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & [1] \end{bmatrix} = \begin{bmatrix} -1/2 & -\sqrt{3}/2 & 0 \\ \sqrt{3}/2 & -1/2 & 0 \\ 0 & 0 & [1] \end{bmatrix} \sigma_{v(xz)}: \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & [1] \end{bmatrix}$$

x and y are not independent in C_{3v} – we get 2×2 (x,y) and 1×1 (z) matrices

C_{3v} Character Table

The third representation can be found from orthogonality and $\chi(E) = 1$. Note:

- C_3 and C_3^2 are identical after a C_3 rotation and are thus in the same class (2 C_3)
- The three mirror planes are identical after C_3 rotations \rightarrow same class ($3\sigma_v$)
- The *E* representation is two dimensional ($\chi(E) = 2$), mixing *x*,*y*. This is a result of C_3 .
- *x* and *y* considered together have the symmetry of the *E* representation

Try proving that this character table actually has the properties expected of a character table.

Summary

Each molecule has a point group, the full set of symmetry operations that describes the molecule's overall symmetry

• You can use the decision tree to assign point groups

Character tables show how the complete set of irreducible representations of a point group transforms under all of the symmetry classes of that group.

- The tables contain all of the symmetry information in convenient form
- We will use the tables to understand bonding and spectroscopy

To dig deeper, check out: Cotton, F. A. Chemical Applications of Group Theory.

Using Symmetry: Chirality

One use for symmetry is identifying chiral molecules

- To be chiral, a molecule must lack an improper rotation axis
- In other words, for a molecule to be chiral it must be in the C_1 , C_n , or D_n point groups (remember that $\sigma = S_1$ and $i = S_2$).

Using Symmetry: Chirality

One use for symmetry is identifying chiral molecules

- To be chiral, a molecule must lack an improper rotation axis
- In other words, for a molecule to be chiral it must be in the C_1 , C_n , or D_n point groups (remember that $\sigma = S_1$ and $i = S_2$).

