Representations, Character Tables, and One Application of Symmetry

Chapter 4

Friday, October 2, 2015

Matrices and Matrix Multiplication

A matrix is an array of numbers, $A_{i j}$

$$
\text { rows }\left(\right)
$$

$\underset{\substack{\text { column } \\ \text { matrix } \\\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]}}{=}$

\[

\]

To multiply two matrices, add the products, element by element, of each row of the first matrix with each column in the second matrix:

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \times\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
(1 \times 1)+(2 \times 3) & (1 \times 2)+(2 \times 4) \\
(3 \times 1)+(4 \times 3) & (3 \times 2)+(4 \times 4)
\end{array}\right)=\left[\begin{array}{cc}
7 & 10 \\
15 & 22
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right) \times\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{c}
1 \\
-2 \\
6
\end{array}\right)
\end{aligned}
$$

Transformation Matrices

Each symmetry operation can be represented by a 3×3 matrix that shows how the operation transforms a set of x, y, and z coordinates

Let's consider $C_{2 h}\left\{E, C_{2}, i, \sigma_{h}\right\}$:

1,5-dibromonaphthalene

$$
\begin{aligned}
& \text { transformation } \\
& \begin{array}{l}
C_{2} \\
x^{\prime}=-x \\
y^{\prime}=-y \\
z^{\prime}=z
\end{array} \quad\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-x \\
-y \\
z
\end{array}\right) \\
& \binom{\text { new }}{\text { coordinates }}=\binom{\text { transformation }}{\text { matrix }}\binom{\text { old }}{\text { coordinates }}=\binom{\text { new in terms }}{\text { of old }} \\
& i \\
& \begin{array}{l}
x^{\prime}=-x \\
y^{\prime}=-y \\
z^{\prime}=-z
\end{array} \quad\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \\
& \left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
-x \\
-y \\
-z
\end{array}\right)
\end{aligned}
$$

Representations of Groups

The set of four transformation matrices forms a matrix representation of the $C_{2 h}$ point group.
$E:\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
C_{2}:\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
i:\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

$$
\sigma_{h}:\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

These matrices combine in the same way as the operations, e.g.,

$$
C_{2} \times C_{2}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=E
$$

The sum of the numbers along each matrix diagonal (the character) gives a shorthand version of the matrix representation, called Γ :

$\boldsymbol{C}_{2 \boldsymbol{h}}$	\boldsymbol{E}	$\boldsymbol{C}_{\boldsymbol{2}}$	\boldsymbol{i}	$\boldsymbol{\sigma}_{\boldsymbol{h}}$
$\boldsymbol{\Gamma}$	3	-1	-3	1

Γ (gamma) is a reducible representation b/c it can be further simplified.

Irreducible Representations

The transformation matrices can be reduced to their simplest units (1×1 matrices in this case) by block diagonalization:

$$
E:\left(\begin{array}{ccc}
\left.\begin{array}{ccc}
{[1]} \\
0 & 0 & y \\
0 & 0 \\
0 & 0 & 0 \\
{[11]}
\end{array}\right)_{z} & 0 \\
{\left[\begin{array}{ccc}
{[11}
\end{array}\right.} & \left(\begin{array}{ccc}
{[-1]} & 0 & 0 \\
0 & {[-1]} & 0 \\
0 & 0 & {[1]}
\end{array}\right) \quad i:\left(\begin{array}{ccc}
{[-1]} & 0 & 0 \\
0 & {[-1]} & 0 \\
0 & 0 & {[-1]}
\end{array}\right) \quad \sigma_{h}:\left(\begin{array}{ccc}
{[1]} & 0 & 0 \\
0 & {[1]} & 0 \\
0 & 0 & {[-1]}
\end{array}\right) ~
\end{array}\right.
$$

We can now make a table of the characters of each 1×1 matrix for each operation:

	$C_{2 h}$	E	C_{2}	i	$\sigma_{\text {h }}$	coordinate
	B_{u}	1	-1	-1	1	x
	B_{u}	1	-1	-1	1	y
	A_{u}	1	1	-1	-1	z
	Γ	3	-1	-3	1	

The three rows (labeled B_{u}, B_{u}, and A_{u}) are irreducible representations of the $C_{2 h}$ point group.

They cannot be simplified further. Their characters sum to give Γ.

Irreducible Representations

The characters in the table show how each irreducible representation transforms with each operation.

$1=$ symmetric (unchanged); $-1=$ antisymmetric (inverted); $0=$ neither

1,5-dibromonaphthalene
$\begin{array}{ll}A_{u} \text { transforms like the z-axis: } & E \rightarrow \text { no change } \\ & C_{2} \rightarrow \text { no change }\end{array}$
$\begin{array}{ll}A_{\mathrm{u}} \text { transforms like the z-axis: } & E \rightarrow \text { no change } \\ & C_{2} \rightarrow \text { no change }\end{array}$ $i \rightarrow$ inverted
$\sigma_{\mathrm{h}} \rightarrow$ inverted
A_{u} has the same symmetry as z in $C_{2 h}$

Irreducible Representations

The characters in the table show how each irreducible representation transforms with each operation.

	symmetry operations					
	$C_{2 h}$	E	C_{2}	i	$\sigma_{\text {h }}$	coordinate
	B_{u}	1	-1	-1	1	x
	B_{u}	1	-1	-1	1	y
	A_{u}	1	1	-1	-1	z

$1=$ symmetric (unchanged); $-1=$ antisymmetric (inverted); $0=$ neither

1,5-dibromonaphthalene
B_{u} transforms like x and y :
$E \rightarrow$ no change $\mathrm{C}_{2} \rightarrow$ inverted $i \rightarrow$ inverted $\sigma_{\mathrm{h}} \rightarrow$ no change

The two B_{u} representations are exactly the same. We "merge" them to eliminate redundancy.

Irreducible Representations

The characters in the table show how each irreducible representation transforms with each operation.

	$\overbrace{}^{\text {symmetry }}$ operations					
	$\mathrm{C}_{2 \mathrm{~h}}$	E	C_{2}	i	$\sigma_{\text {h }}$	coordinate
	B_{u}	1	-1	-1	1	$x, y>$
	A_{u}	1	1	-1	-1	z

$1=$ symmetric (unchanged); $-1=$ antisymmetric (inverted); $0=$ neither

1,5-dibromonaphthalene
B_{u} transforms like x and y :
$E \rightarrow$ no change $\mathrm{C}_{2} \rightarrow$ inverted $i \rightarrow$ inverted $\sigma_{\mathrm{h}} \rightarrow$ no change

The two B_{u} representations are exactly the same. We "merge" them to eliminate redundancy.

Character Tables

List of the complete set of irreducible representations (rows) and symmetry classes (columns) of a point group.

- The first column gives the Mulliken label for the representation
- A or $B=1 \times 1$ representation that is symmetric (A) or anti-symmetric (B) to the principal axis.
- $E=2 \times 2$ representation (character under the identity will be 2)
- $T=3 \times 3$ representation (character under the identity will be 3)
- For point groups with inversion, the representations are labelled with a subscript g (gerade) or u (ungerade) to denote symmetric or anti-symmetric with respect to inversion.
- If present, number subscripts refer to the symmetry of the next operation class after the principle axis. For symmetric use subscript 1 and for anti-symmetric use subscript 2.

Character Tables

List of the complete set of irreducible representations (rows) and symmetry classes (columns) of a point group.
symmetry classes

	$C_{2 h}$	E	C_{2}	i	σ_{h}	linear	quadratic
	A_{g}	1	1	1	1	R_{z}	$x^{2}, y^{2}, z^{2}, x y$
	B_{g}	1	-1	1	-1	R_{x}, R_{y}	$x z, y z$
	A_{u}	1	1	-1	-1	z	
	B_{u}	1	-1	-1	1	x, y	

- The last two columns give functions (with an origin at the inversion center) that belong to the given representation (e.g., the $d_{x 2-y 2}$ and $d_{z 2}$ orbitals are A_{g}, while the p_{z} orbital is A_{u}).

Properties of Character Tables

$\boldsymbol{C}_{2 \mathrm{~h}}$	\boldsymbol{E}	$\boldsymbol{C}_{\mathbf{2}}$	\boldsymbol{i}	$\boldsymbol{\sigma}_{\mathrm{h}}$	linear	quadratic
A_{g}	1	1	1	1	R_{z}	$x^{2}, y^{2}, z^{2}, x y$
B_{g}	1	-1	1	-1	R_{x}, R_{y}	$x z, y z$
A_{u}	1	1	-1	-1	z	
B_{u}	1	-1	-1	1	x, y	

- The total number of symmetry operations is the order (h). $h=4$ in this case.
- Operations belong to the same class if they are identical within coordinate systems accessible by a symmetry operation. One class is listed per column.
- \# irreducible representations = \# classes (tables are square).
- One representation is totally symmetric (all characters =1).
- h is related to the characters (χ) in the following two ways:

$$
h=\sum_{i}\left[\chi_{i}(E)\right]^{2}
$$

$$
h=\sum_{\boldsymbol{R}}\left[\chi_{i}(\boldsymbol{R})\right]^{2}
$$

where i and R are indices for the representations and the symmetry operations.

- Irreducible representations are orthogonal:

$$
\sum_{R} \chi_{i}(\boldsymbol{R}) \chi_{j}(\boldsymbol{R})=0 \quad \text { when } i \neq j
$$

Example

Let's use the character table properties to finish deriving the $C_{2 h}$ table. From the transformation matrices, we had:

$\boldsymbol{C}_{\mathbf{2 h}}$	\boldsymbol{E}	$\boldsymbol{C}_{\mathbf{2}}$	\boldsymbol{i}	$\boldsymbol{\sigma}_{\boldsymbol{h}}$	coordinate
B_{u}	1	-1	-1	1	x, y
A_{u}	1	1	-1	-1	z

There must be four representations and one is totally symmetric, so:

$\boldsymbol{C}_{\mathbf{2 h}}$	\boldsymbol{E}	$\boldsymbol{C}_{\mathbf{2}}$	\boldsymbol{i}	$\boldsymbol{\sigma}_{\boldsymbol{h}}$	coordinate
A_{g}	1	1	1	1	
$?$	$?$	$?$	$?$	$?$	
B_{u}	1	-1	-1	1	x, y
A_{u}	1	1	-1	-1	z

The fourth representation must be orthogonal to the other three and have $\chi(E)=1$.

The only way to achieve this is if $\chi\left(C_{2}\right)=-1, \chi(i)=1, \chi\left(\sigma_{h}\right)=-1$, giving a B_{g}

Example

Let's use the character table properties to finish deriving the $C_{2 h}$ table. From the transformation matrices, we had:

$\boldsymbol{C}_{\mathbf{2 h}}$	\boldsymbol{E}	$\boldsymbol{C}_{\mathbf{2}}$	\boldsymbol{i}	$\boldsymbol{\sigma}_{\boldsymbol{h}}$	coordinate
B_{u}	1	-1	-1	1	x, y
A_{u}	1	1	-1	-1	z

There must be four representations and one is totally symmetric, so:

$\boldsymbol{C}_{\mathbf{2 h}}$	\boldsymbol{E}	$\boldsymbol{C}_{\mathbf{2}}$	\boldsymbol{i}	$\boldsymbol{\sigma}_{\boldsymbol{h}}$	coordinate
A_{g}	1	1	1	1	
B_{g}	1	-1	1	-1	
B_{u}	1	-1	-1	1	x, y
A_{u}	1	1	-1	-1	z

The fourth representation must be orthogonal to the other three and have $\chi(E)=1$.

The only way to achieve this is if $\chi\left(C_{2}\right)=-1, \chi(i)=1, \chi\left(\sigma_{h}\right)=-1$, giving a B_{g}

$C_{3 v}$ Character Table

$\boldsymbol{C}_{3 v}$	\boldsymbol{E}	$\mathbf{2 C}_{\mathbf{3}}$	$\mathbf{3 \sigma _ { v }}$	linear	quadratic
A_{1}	1	1	1	z	$x^{2}+y^{2}, z^{2}$
A_{2}	1	1	-1	R_{z}	
E	2	-1	0	$(x, y),\left(R_{x}, R_{y}\right)$	$\left(x^{2}-y^{2}, x y\right)$, $(x z, y z)$

The characters for A_{1} and E come from the transformation matrices:

$$
\text { E: } \begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad C_{3}:\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered} \underset{\begin{array}{cc}
\text { rotation matrix about } z \text {-axis } \\
\text { see website and } p .96
\end{array}}{\left(\begin{array}{ccc}
-1 / 2 & -\sqrt{3} / 2 & 0 \\
\sqrt{3} / 2 & -1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right)} \sigma_{v(x z)}:\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

In block form:

x and y are not independent in $C_{3 v}$ - we get $2 \times 2(x, y)$ and $1 \times 1(z)$ matrices

$C_{3 v}$ Character Table

$\boldsymbol{C}_{3 v}$	E	$\mathbf{2 C}_{\mathbf{3}}$	$\mathbf{3 \sigma _ { v }}$	linear	quadratic		
A_{1}	1	1	1	z	$x^{2}+y^{2}, z^{2}$		
A_{2}	1	1	-1	R_{z}			
E	2	-1	0	$(x, y),\left(R_{x}, R_{y}\right)$			$\left(x^{2}-y^{2}, x y\right)$,
:---:							
$(x z, y z)$							

The third representation can be found from orthogonality and $\chi(E)=1$.

Note:

- $\quad C_{3}$ and $C_{3}{ }^{2}$ are identical after a C_{3} rotation and are thus in the same class $\left(2 C_{3}\right)$
- The three mirror planes are identical after \boldsymbol{C}_{3} rotations \rightarrow same class (3 $\boldsymbol{\sigma}_{\mathrm{v}}$)
- The E representation is two dimensional $(\chi(E)=2)$, mixing x, y. This is a result of C_{3}.
- $\quad x$ and y considered together have the symmetry of the E representation

Try proving that this character table actually has the properties expected of a character table.

Summary

Each molecule has a point group, the full set of symmetry operations that describes the molecule's overall symmetry

- You can use the decision tree to assign point groups

Character tables show how the complete set of irreducible representations of a point group transforms under all of the symmetry classes of that group.

- The tables contain all of the symmetry information in convenient form
- We will use the tables to understand bonding and spectroscopy

To dig deeper, check out: Cotton, F. A. Chemical Applications of Group Theory.

Using Symmetry: Chirality

One use for symmetry is identifying chiral molecules

- To be chiral, a molecule must lack an improper rotation axis
- In other words, for a molecule to be chiral it must be in the $\boldsymbol{C}_{1}, \boldsymbol{C}_{\boldsymbol{n}}$, or D_{n} point groups (remember that $\sigma=S_{1}$ and $i=S_{2}$).

C_{1}

Using Symmetry: Chirality

One use for symmetry is identifying chiral molecules

- To be chiral, a molecule must lack an improper rotation axis
- In other words, for a molecule to be chiral it must be in the $\boldsymbol{C}_{1}, \boldsymbol{C}_{\boldsymbol{n}}$, or D_{n} point groups (remember that $\sigma=S_{1}$ and $i=S_{2}$).

D_{3}

