Crystal Structures

Chapter 7
Wednesday, October 21, 2015

Interstitial sites in CP Structures

A large number of ionic structures can be regarded as built of CP layers of anions with the cations placed in interstitial sites

for every anion, there is 1 Octahedral site and 2 Tetrahedral sites

Fig. 7.7 Interstitial sites in a c.p. structure. Heavy circles are above and the dashed circles below the plane of the paper: (a) T_{+}site, (b) T_{-}site, (c) O site

Octahedral Holes in CCP

Tetrahedral Holes in CCP

Octahedral Holes in CCP and HCP

CCP

HCP

Location

OCTAHEDRAL
Interstitial Holes

1 per sphere

Tetrahedral Holes in CCP and HCP

CCP

HCP

(3/8 of a unit cell directly above/below each anion)

Ionic Crystal Structures

Many ionic crystals consist of a close-packed lattice of the larger anions with the smaller cations occupying interstitial sites.

	Interstitial sites			Examples
Anion arrangement	T_{+}	T.	Oct	
c.c.p.	-	-	1	NaCl, rock salt $<$
c..p.				ZnS blende or sphalerite
	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{2}$	$\mathrm{MgAl}_{2} \mathrm{O}_{4}$, spinel
			$\frac{1}{2}$	CdCl_{2}
	-	-	$\frac{1}{3}$	CrCl_{3}
	1	1		$\mathrm{K}_{2} \mathrm{O}$ antifluorite
h.c.p.	-	-	1	NiAs
	1			ZnS, wurtzite
	-	-		CdI_{2}
		-		TiO_{2}^{*}, rutile
	1	1	${ }^{\frac{2}{3}}$	${ }_{42}^{\mathrm{Al}_{2} \mathrm{O}_{3}}$
	$\frac{1}{8}$ 1	8		${ }_{\beta-\mathrm{Li}_{3} \mathrm{PO}_{4}}$
	$\frac{1}{2}$	$\frac{1}{2}$		$\gamma-\mathrm{Li}_{3} \mathrm{PO}_{4}{ }^{*}$
c.c.p. ' CaO_{3} ' layers	2	$\underline{-}$	$\frac{1}{4}$	CaTiO_{3} perovskite

[^0]
NaCl Structure

CCP with all octahedral holes filled

Table 7.5 Some compounds with the NaCl structure

Coordination $=6,6$
Cation Coord. \rightarrow Octahedron
Anion Coord. \rightarrow Octahedron
Connectivity \rightarrow Edge sharing octahedra 4 NaCl in unit cell

	$a(\AA)$		$a(\AA)$		$a(\AA)$		$a(\AA)$
MgO	4.213	MgS	5.200	LiF	4.0270	KF	5.347
CaO	4.8105	CaS	5.6948	LiCl	5.1396	KCl	6.2931
SrO	5.160	SrS	6.020	LiBr	5.5013	KBr	6.5966
BaO	5.539	BaS	6.386	LiI	6.00	KI	7.0655
TiO	4.177	$\alpha \mathrm{MnS}$	5.224	LiH	4.083	RbF	5.6516
MnO	4.445	MgSe	5.462	NaF	4.64	RbCl	6.5810
FeO	4.307	CaSe	5.924	NaCl	5.6402	RbBr	6.889
CoO	4.260	SrSe	6.246	NaBr	5.9772	RbI	7.342
NiO	4.1769	BaSe	6.600	NaI	6.473	AgF	4.92
CdO	4.6953	CaTe	6.356	NaH	4.890	AgCl	5.549
SnAs	5.7248	SrTe	6.660	ScN	4.44	AgBr	5.7745
TiC	4.3285	BaTe	7.00	TiN	4.240	CsF	6.014
UC	4.955	LaN	5.30	UN	4.890		

Zinc Blende (ZnS) Structure

CCP with all T^{+}holes filled

Coordination $=4,4$
Cation Coord. \rightarrow Tetrahedron
Anion Coord. \rightarrow Tetrahedron
Connectivity \rightarrow Corner sharing Tetrahedra 4 ZnS in unit cell

Table 7.6 Some compounds with the zinc blende (sphalerite) structure

	$a(\AA)$		$a(\AA)$		$a(\AA)$		$a(\AA)$		
CuF	4.255	BeS	4.8624	$\beta-\mathrm{CdS}$	5.818	BN	3.616	GaP	5.448
CuCl	5.416	BeSe	5.07	CdSe	6.077	BP	4.538	GaAs	5.6534
$\gamma-\mathrm{CuBr}$	5.6905	BeTe	5.54	CdTe	6.481	BAs	4.777	GaSb	6.095
$\gamma-\mathrm{CuI}$	6.051	$\beta-\mathrm{ZnS}$	5.4060	HgS	5.8517	AlP	5.451	InP	5.869
$\gamma-\mathrm{AgI}$	6.495	ZnSe	5.667	HgSe	6.085	AlAs	5.662	InAs	6.058
$\beta-\mathrm{MnS}$, red	5.600	ZnTe	6.1026	HgTe	6.453	AlSb	6.1347	InSb	6.4782
$\beta-\mathrm{MnSe}$	5.88	$\beta-\mathrm{SiC}$	4.358						

Fluorite $\left(\mathrm{CaF}_{2}\right)$ and Antifluorite $\left(\mathrm{Li}_{2} \mathrm{O}\right)$

Fluorite: CCP of Ca^{2+} with all T^{+}and T^{-}holes filled with F^{-}
Antifluorite: CCP of O^{2-} with all T^{+}and T^{-}holes filled with Li^{+}

Plan view

FCa_{4} Tetrahedra

Fuorite A-cell

Coordination $=8,4$ (fluorite)
Cation Coord. \rightarrow Cubic Anion Coord. \rightarrow Tetrahedral Connectivity \rightarrow Edge sharing FCa_{4} tetrahedra or edge sharing CaF_{8} cubes $4 \mathrm{CaF}_{2}$ in unit cell

Table 7.7 Some compounds with fluorite and antifluorite structure

	Fluorite structure			Antifluorite structure			
	$a(\AA)$		$a(\AA)$	$a(\AA)$			$a(\AA)$
CaF_{2}	5.4626	PbO_{2}	5.349	$\mathrm{Li}_{2} \mathrm{O}$	4.6114	$\mathrm{K}_{2} \mathrm{O}$	6.449
SrF_{2}	5.800	CeO_{2}	5.4110	$\mathrm{Li}_{2} \mathrm{~S}$	5.710	$\mathrm{K}_{2} \mathrm{~S}$	7.406
SrCl_{2}	6.9767	PrO_{2}	5.392	$\mathrm{Li}_{2} \mathrm{Se}$	6.002	$\mathrm{K}_{2} \mathrm{Se}$	7.692
BaF_{2}	6.2001	ThO_{2}	5.600	$\mathrm{Li}_{2} \mathrm{Te}$	6.517	$\mathrm{K}_{2} \mathrm{Te}$	8.168
BaCl_{2}	7.311	PaO_{2}		$\mathrm{Na}_{2} \mathrm{O}$	5.55	$\mathrm{Rb}_{2} \mathrm{O}$	6.74
CdF_{2}	5.3895	UO_{2}	5.372	$\mathrm{Na}_{2} \mathrm{~S}$	6.539	$\mathrm{Rb}_{2} \mathrm{~S}$	7.65
HgF_{2}	5.5373 5.836	NpO_{2}	5.4334	$\mathrm{Na}_{2} \mathrm{Se}$	6.823		
$\mathrm{EuF}_{\beta-\mathrm{PbF}}^{2}$	5.836 5.940	PuO_{2}	5.386 5.376	$\mathrm{Na}_{2} \mathrm{Te}$	7.329		
$\beta-\mathrm{PbF}_{2}$	5.940	AmO_{2}	5.376				
		CmO_{2}	5.3598				

Alternative Representations of Fluorite

Displacing the unit cell by $1 / 4$ of a body diagonal emphasizes the cubic cation coordination:

Fuorite B-cell

Plan view

CaF_{8} Cubes

Fluorite $\left(\mathrm{CaF}_{2}\right)$ and Antifluorite $\left(\mathrm{Li}_{2} \mathrm{O}\right)$

- origin of the term "fluorescence" (George Stokes, 1852)
- fluorite common for fluorides of large, divalent cations and oxides of large tetravalent cations $\left(\mathrm{M}^{2+} \mathrm{F}_{2}\right.$ and $\left.\mathrm{M}^{4+} \mathrm{O}_{2}\right)$
- antifluorite common for oxides/chalcogenides of alkali earths $\left(\mathrm{M}_{2} \mathrm{O}\right)$

Wurtzite (ZnS) Structure

HCP with all T^{+}holes filled

Coordination $=4,4$
Cation Coord. \rightarrow Tetrahedron Anion Coord. \rightarrow Tetrahedron Connectivity \rightarrow Corner sharing Tetra. 2 ZnS per unit cell

Table 7.9 Some compounds with the wurtzite structure. (Data taken from Wyckoff, 1971, Vol. 1)

	$a(\AA)$	$c(\AA)$	c	c / a	$a(\AA)$	$c(\AA)$	u	c / a
ZnO	3.2495	5.2069	0.345	1.602	AgI	4.580	7.494	
ZnS	3.811	6.234		1.636 AlN	3.111	4.978	0.385	1.636
ZnSe	3.98	6.53		1.641	GaN	3.180	5.166	
ZnTe	4.27	6.99		1.637 InN	3.533	5.693		1.625
BeO	2.698	4.380	0.378	1.623	TaN	3.05	4.94	
CdS	4.1348	6.7490		$1.632 \mathrm{NH}_{4} \mathrm{~F}$	4.39	7.02	0.365	1.620
CdSe	4.30	7.02	$1.633 \mathrm{SiC}_{2}$	3.076	5.048		1.641	
MnS	3.976	6.432	1.618					
MnSe	4.12	6.72		1.631				

Diamond Structure

same as zinc blende, but with only one element

 diamond
zinc blende

Coordination $=4$
Connectivity \rightarrow Corner sharing Tetrahedra 8 C atoms per unit cell

TABLE 1.9 Elemental Crystals with the Diamond Crystal Structure

Element	$a(\mathrm{~nm})^{a}$	Element	$a(\mathrm{~nm})^{a}$
C	0.3567	Si	0.543
Ge	0.5657	Sn (gray)	0.649

[^1]
CsCI Structure

simple cubic lattice with Cs^{+}at cube center (not CP , not BCC !)

Coordination $=8,8$
Cation Coord. \rightarrow Cubic
Anion Coord. \rightarrow Cubic
Connectivity \rightarrow face sharing cubes
1 CsCl per unit cell
Table 7.11 Some compounds with the CsCl structure

	$a(\AA)$		
CsCl	4.123	CuZn	2.945
CsBr	4.286	CuPd	2.988
CsI	4.5667	AuMg	3.259
CsCN	4.25	AuZn	3.19
$\mathrm{NH}_{4} \mathrm{Cl}$	3.8756	AgZn	3.156
$\mathrm{NH}_{4} \mathrm{Br}$	4.0594	LiAg	3.168
TlCl	3.8340	AlNi	2.881
TlBr	3.97	LiHg	3.287
TlI	4.198	MgSr	3.900

Adoption by chlorides, bromides and iodides of larger cations

Self Test

Identify the following crystal structures:

[^0]: *The h.c.p. oxide layers in rutile and $\gamma-\mathrm{Li}_{3} \mathrm{PO}_{4}$ are not planar but are buckled. The oxide ion arrangement in these may alternatively be described as tetragonal packed (t.p.).

[^1]: ${ }^{a}$ Lattice constants are values at room temperature.

