A Second Application of Symmetry

Chapter 4
Monday, October 5, 2015

Using Symmetry: Vibrational Spectroscopy

IR and Raman spectra can be interpreted using symmetry.

- For nonlinear molecules, the number of vibrational modes is $3 N-6$, where N is the number of atoms and $3 N$ the number of degrees of freedom
- Consider $\mathrm{N}_{2} \mathrm{O}_{4}$, which is $\mathrm{D}_{2 h}$

- Each atom can move in three dimensions
- If all atoms move the same amount in the same direction the molecule moves, which is a translation, not a vibration (accounts for three degrees of freedom)
- Molecule can also rotate around the three orthogonal axes (which accounts for three more degrees of freedom)
- So for $\mathrm{N}_{2} \mathrm{O}_{4}$ we predict that there will be $\mathbf{3 N - 6 = 1 2}$ vibrational modes

Using Symmetry: Vibrational Spectroscopy

We can use character tables to determine the symmetry of all 18 motions and then assign them to translation, rotation, or vibration.

We can also tell which vibrations are IR or Raman active.

Procedure:

1. Assign x, y, z coordinates to each atom.

2. Determine how each axis transforms for every class of symmetry operation in the group.

- If an atom moves, the character for all of its axes is $\mathbf{0}$
- If an atom is stationary and the axis direction is unchanged, its character is 1
- If an atom is stationary and the axis direction is reversed, its character is $\mathbf{- 1}$

3. Sum the characters in each class to determine the reducible representation Γ

Using Symmetry: Vibrational Spectroscopy

$D_{2 h}$	E	$C_{2}(z)$	$C_{2}(y)$	$C_{2}(x)$	i	$\sigma(x y)$	$\boldsymbol{\sigma}(x z)$	$\sigma(y z)$
Γ	18	0	0	-2	0	6	2	0

E: all 18 axes unchanged $\rightarrow \chi=18$
$C_{2}(z)$: all atoms move $\quad \rightarrow \chi=0$
$\mathrm{C}_{2}(y)$: all atoms move $\quad \rightarrow \chi=0$
$C_{2}(x)$: oxygens move N's x unchanged
N's y, z reversed $\quad \rightarrow \chi=-2$
i : all atoms move $\quad \rightarrow \chi=0$
$\sigma(x y): z$ axes reversed
x, y axes unchanged $\rightarrow \chi=6$
Γ is the reducible representation for all motions of $\mathrm{N}_{2} \mathrm{O}_{4}$
$\sigma(x z)$: oxygens move
N's x, z unchanged
N's y reversed
$\rightarrow \chi=2$
$\sigma(y z):$ all atoms move $\quad \rightarrow \chi=0$

Using Symmetry: Vibrational Spectroscopy

$D_{2 \mathrm{~h}}$	E	$C_{2}(z)$	$C_{2}(y)$	$C_{2}(x)$	i	$\boldsymbol{\sigma}(x y)$	$\boldsymbol{\sigma}(x z)$	$\boldsymbol{\sigma}(y z)$
Γ	18	0	0	-2	0	6	2	0

4. Now reduce Γ to its irreducible components using the character table and the following property of groups:

$$
\begin{aligned}
\# A_{g} & =1 / 8^{*}[18+0+0-2+0+6+2+0]=3 \\
\# B_{1 g} & =1 / 8^{*}[18+0+0+2+0+6-2+0]=3 \\
\# B_{2 g} & =1 / 8^{*}[18+0+0+2+0-6+2+0]=2 \\
\# B_{3 g} & =1 / 8^{*}[18+0+0-2+0-6-2+0]=1 \\
\# A_{u} & =1 / 8^{*}[18+0+0-2+0-6-2+0]=1 \\
\# B_{1 u} & =1 / 8^{*}[18+0+0+2+0-6+2+0]=2 \\
\# B_{2 \mathrm{u}} & =1 / 8^{*}[18+0+0+2+0+6-2+0]=3 \\
\# B_{3 \mathrm{u}} & =1 / 8^{*}[18+0+0-2+0+6+2+0]=3
\end{aligned}
$$

	\mathbf{E}	$\mathbf{C}_{\mathbf{2}}(\mathbf{z})$	$\mathbf{C}_{\mathbf{2}}(\mathrm{y})$	$\mathbf{C}_{\mathbf{2}}(\mathbf{x})$	\mathbf{i}	$\boldsymbol{\sigma}(\mathrm{xy})$	$\boldsymbol{\sigma}(\mathrm{xz})$	$\boldsymbol{\sigma}(\mathrm{yz})$	linear, rotations	quadratic
$\mathbf{A}_{\mathbf{g}}$	1	1	1	1	1	1	1	1		$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathbf{B}_{\mathbf{l g}}$	1	1	-1	-1	1	1	-1	-1	$\mathrm{R}_{\mathbf{z}}$	xy
$\mathbf{B}_{\mathbf{2 g}}$	1	-1	1	-1	1	-1	1	-1	R_{y}	xz
$\mathbf{B}_{\mathbf{3 g}}$	1	-1	-1	1	1	-1	-1	1	R_{x}	yz
$\mathbf{A}_{\mathbf{u}}$	1	1	1	1	-1	-1	-1	-1		
$\mathbf{B}_{\mathbf{l u}}$	1	1	-1	-1	-1	-1	1	1	z	
$\mathbf{B}_{\mathbf{2 u}}$	1	-1	1	-1	-1	1	-1	1	y	
$\mathrm{B}_{\mathbf{3 u}}$	1	-1	-1	1	-1	1	1	-1	x	

$$
\text { So, } \Gamma=3 A_{\mathrm{g}}+3 B_{1 \mathrm{~g}}+2 B_{2 \mathrm{~g}}+B_{3 \mathrm{~g}}+A_{\mathrm{u}}+2 B_{1 \mathrm{u}}+3 B_{2 \mathrm{u}}+3 B_{3 \mathrm{u}}
$$

Using Symmetry: Vibrational Spectroscopy

The reducible representation is the sum of 18 irreducible reps:
$\Gamma=3 A_{\mathrm{g}}+3 B_{1 \mathrm{~g}}+2 B_{2 \mathrm{~g}}+B_{3 \mathrm{~g}}+A_{\mathrm{u}}+2 B_{1 \mathrm{u}}+3 B_{2 \mathrm{u}}+3 B_{3 \mathrm{u}}$
5. Now use the character table to subtract the translations and rotations, leaving the representations corresponding to the vibrations.

Translations $(x, y, z)=B_{1 u}+B_{2 u}+B_{3 u}$ Rotations $\left(R_{x}, R_{y}, R_{z}\right)=B_{1 g}+B_{2 g}+B_{3 g}$
Vibrational modes (all that remain) $=$ $3 A_{\mathrm{g}}+2 B_{1 \mathrm{~g}}+B_{2 \mathrm{~g}}+A_{\mathrm{u}}+B_{1 \mathrm{u}}+2 B_{2 \mathrm{u}}+2 B_{3 \mathrm{u}}$

These are the symmetries of the 12 vibrational modes of $\mathrm{N}_{2} \mathrm{O}_{4}$

Character table for $\mathrm{D}_{2 \mathrm{~h}}$ point group										
	E	C_{2} (z)	C_{2} (y)	$\mathrm{C}_{2}(\mathrm{x})$	i	σ (xy)	$\sigma(\mathrm{xz})$	σ (yz)	$\begin{array}{\|c\|} \text { linear, } \\ \text { rotations } \end{array}$	quadratic
$\mathrm{Ag}_{\mathbf{g}}$	1	1	1	1	1	1	1	1		$\mathrm{x}^{2}, y^{2}, z^{2}$
$\mathrm{B}_{1 \mathrm{~g}}$	1	1	-1	-1	1	1	-1	-1	R_{z}	xy
$\mathrm{B}_{2 \mathrm{~g}}$	1	-1	1	-1	1	-1	1	-1	R_{y}	xz
$\mathrm{B}_{3 \mathrm{~g}}$	1	-1	-1	1	1	-1	-1	1	R_{x}	yz
A_{u}	1	1	1	1	-1	-1	-1	-1		
$\mathrm{B}_{1 \mathrm{l}}$	1	1	-1	-1	-1	-1	1	1	z	
$\mathrm{B}_{2 \mathrm{u}}$	1	-1	1	-1	-1	1	-1	1	y	
$\mathrm{B}_{3 \mathrm{u}}$	1	-1	-1	1	-1	1	1	-1	x	

Using Symmetry: Vibrational Spectroscopy

Let's consider the vibrational modes of $\mathrm{N}_{2} \mathrm{O}_{4}$ in a little more detail.

$$
\text { Vibrations }=3 A_{g}+2 B_{1 g}+B_{2 g}+A_{u}+B_{1 u}+2 B_{2 u}+2 B_{3 u}
$$

Using the table, we can guess what these modes might look like. e.g., the three A_{g} modes are totally symmetric:

the A_{u} mode is symmetric w.r.t C_{2} but antisymmetric w.r.t. σ and i :

Using Symmetry: Vibrational Spectroscopy

The character table tells us whether the vibrational modes are IR active and/or Raman active.

To be IR active (allowed), the vibration must change the dipole moment of the molecule.

- Only irreducible representations with x, y, z symmetry do this

$$
\mathrm{N}_{2} \mathrm{O}_{4} \text { vibrations }=3 A_{\mathrm{g}}+2 B_{1 \mathrm{~g}}+B_{2 \mathrm{~g}}+A_{\mathrm{u}}+B_{1 \mathrm{u}}+2 B_{2 \mathrm{u}}+2 B_{3 \mathrm{u}}
$$

IR active: $B_{1 u}+2 B_{2 u}+2 B_{3 u}$

Character table for $\mathrm{D}_{2 \mathrm{~h}}$ point group										
	E	C_{2} (z)	C_{2} (y)	$\mathrm{C}_{2}(\mathrm{x})$	i	σ (xy)	σ (xz)	σ (yz)	linear, rotations	quadratic
Ag_{g}	1	1	1	1	1	1	1	1		$\mathrm{x}^{2}, y^{2}, z^{2}$
$\mathrm{B}_{1 \mathrm{~g}}$	1	1	-1	-1	1	1	-1	-1	R_{z}	xy
$\mathrm{B}_{2 \mathrm{~g}}$	1	-1	1	-1	1	-1	1	-1	R_{y}	xz
$\mathrm{B}_{3 \mathrm{~g}}$	1	-1	-1	1	1	-1	-1	1	R_{x}	yz
A_{u}	1	1	1	1	-1	-1	-1	-1		
$\mathrm{B}_{1 \mathrm{u}}$	1	1	-1	-1	-1	-1	1	1	z	
$\mathrm{B}_{2 \mathrm{u}}$	1	-1	1	-1	-1	1	-1	1	y	
$\mathrm{B}_{3 \mathrm{u}}$	1	-1	-1	1	-1	1	1	-1	x	

Using Symmetry: Vibrational Spectroscopy

The character table tells us whether the vibrational modes are IR active and/or Raman active.

To be Raman active (allowed), the vibration must change the polarizability of the molecule.

- Only irreducible representations that transform like the binary products of x, y, and z (i.e., $x y, x z, y z, x^{2}, y^{2}, z^{2}$ or their linear combinations) do this
$\mathrm{N}_{2} \mathrm{O}_{4}$ vibrations $=3 A_{\mathrm{g}}+2 B_{1 \mathrm{~g}}+B_{2 \mathrm{~g}}+A_{\mathrm{u}}+B_{1 \mathrm{u}}+2 B_{2 \mathrm{u}}+2 B_{3 \mathrm{u}}$
Raman active: $3 A_{\mathrm{g}}+2 B_{1 \mathrm{~g}}+B_{2 \mathrm{~g}}$
*Note that the A_{u} mode is IR and Raman silent.

| Character table for $\mathbf{D}_{\mathbf{2 h}}$ point group | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | \mathbf{E} | $\mathbf{C}_{\mathbf{2}}(\mathbf{z})$ | $\mathbf{C}_{\mathbf{2}}(\mathbf{y})$ | $\mathbf{C}_{\mathbf{2}}(\mathbf{x})$ | \mathbf{i} | $\boldsymbol{\sigma}(\mathbf{x y})$ | $\boldsymbol{\sigma}(\mathrm{xz})$ | $\boldsymbol{\sigma}(\mathrm{yz})$ | linear,
 rotations | quadratic |
| $\mathbf{A}_{\mathbf{g}}$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | x^{2}, y^{2}, z^{2} |
| $\mathbf{B}_{\mathbf{l g}}$ | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | $\mathrm{R}_{\mathbf{z}}$ | xy |
| $\mathbf{B}_{\mathbf{2 g}}$ | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | R_{y} | xz |
| $\mathbf{B}_{\mathbf{3 g}}$ | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | R_{x} | yz |
| $\mathbf{A}_{\mathbf{u}}$ | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | | |
| $\mathbf{B}_{\mathbf{l u}}$ | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | z | |
| $\mathbf{B}_{\mathbf{2 u}}$ | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | y | |
| $\mathbf{B}_{\mathbf{3 u}}$ | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | x | |

Using Symmetry: Selected Vibrational Modes

We may be interested in the vibrations of specific groups in a molecule rather than all possible motions of the molecule.
e.g., C-O stretching in metal carbonyl complexes

In this case, we can create reducible representations of the bond vectors of interest, determine their irreducible components, and find the active modes.

Example: can we use IR/Raman spectroscopy to distinguish between fac- $\mathrm{ML}_{3}(\mathrm{CO})_{3}$ and mer $-\mathrm{ML}_{3}(\mathrm{CO})_{3}$ isomers?

Using Symmetry: Selected Vibrational Modes

Let's create reducible representations of the $\mathrm{C}-\mathrm{O}$ bonds in each
molecule:
$\chi=1$ if unchanged
$\chi=0$ if changed

facial
C3v

$\boldsymbol{C}_{3 \mathrm{v}}$	\boldsymbol{E}	$\mathbf{2} \boldsymbol{C}_{3}$	$\mathbf{3} \sigma_{\mathrm{v}}$
$\boldsymbol{\Gamma}$	3	0	1

Reduce to irreducible representations:

Character table for $\mathrm{C}_{3 \mathrm{r}}$ point group

	\mathbf{E}	$\mathbf{2 C} \mathbf{C}_{\mathbf{3}}(\mathrm{z})$	$\mathbf{3} \mathbf{\sigma}_{\mathrm{r}}$	linear, rotations	quadratic
$\mathbf{A}_{\mathbf{1}}$	1	1	1	z	$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathbf{A}_{\mathbf{2}}$	1	1	-1	R_{z}	
\mathbf{E}	2	-1	0	$(\mathrm{x}, \mathrm{y})\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\right)$	$\left(\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{xy}\right)(\mathrm{xz}, \mathrm{yz})$

$\# A_{1}=1 / 6 *[3+0+3]=1$
$\# A_{2}=1 / 6 *[3+0-3]=0$ \# $\mathrm{E}=1 / 6{ }^{*}[6+0+0]=1$

$$
\text { So, } \Gamma=A_{1}+E
$$

Using Symmetry: Selected Vibrational Modes

Let's create reducible representations of the C-O bonds in each molecule:

Character table for $\mathrm{C}_{3 \mathrm{v}}$ point group

	\mathbf{E}	$\mathbf{2 C} \mathbf{C}_{\mathbf{3}}(\mathrm{z})$	$\mathbf{3} \mathbf{\sigma}_{\mathrm{r}}$	linear, rotations	quadratic
$\mathbf{A}_{\mathbf{1}}$	1	1	1	z	$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathbf{A}_{\mathbf{2}}$	1	1	-1	R_{z}	
\mathbf{E}	2	-1	0	$(\mathrm{x}, \mathrm{y})\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\right)$	$\left(\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{xy}\right)(\mathrm{xz}, \mathrm{yz})$

$\Gamma=A_{1}+E$
IR active $(x, y, z): A_{1}$ and E (2 peaks predicted)
Raman active (quadratic): A_{1} and E (2 peaks predicted)
\rightarrow The fac isomer is expected to have 2 peaks in both its IR and Raman spectra.

Using Symmetry: Selected Vibrational Modes

Let's create reducible representations of the C-O bonds in each molecule:

$$
\begin{aligned}
& \chi=1 \text { if unchanged } \\
& \chi=0 \text { if changed }
\end{aligned}
$$

meridional
$\mathrm{C}_{2 \mathrm{v}}$

Character table for $\mathrm{C}_{2 \mathrm{r}}$ point group

	\mathbf{E}	$\mathbf{C}_{\mathbf{2}}(\mathrm{z})$	$\boldsymbol{\sigma}_{\mathrm{r}}(\mathrm{xz})$	$\sigma_{\mathrm{r}}(\mathrm{yz})$	linear, rotations	quadratic
$\mathbf{A}_{\mathbf{1}}$	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{\mathbf{2}}$	1	1	-1	-1	R_{z}	xy
$\mathrm{B}_{\mathbf{1}}$	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
$\mathrm{B}_{\mathbf{2}}$	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

Reduce to irreducible representations:

$\# A_{1}=1 / 4^{*}[3+1+3+1]=2$ $\# A_{2}=1 / 4^{*}[3+1-3-1]=0$ $\# B_{1}=1 / 4^{*}[3-1+3-1]=1$ $\# B_{2}=1 / 4^{*}[3-1-3+1]=0$

$$
\text { So, } \Gamma=2 A_{1}+B_{1}
$$

Using Symmetry: Selected Vibrational Modes

Let's create reducible representations of the C-O bonds in each molecule:

	\mathbf{E}	$\mathbf{C}_{\mathbf{2}}(\mathrm{z})$	$\boldsymbol{\sigma}_{\mathrm{v}}(\mathrm{xz})$	$\boldsymbol{\sigma}_{\mathrm{v}}(\mathrm{yz})$	linear, rotations	quadratic
$\mathrm{A}_{\mathbf{1}}$	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{\mathbf{2}}$	1	1	-1	-1	R_{z}	xy
$\mathrm{B}_{\mathbf{1}}$	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
$\mathrm{B}_{\mathbf{2}}$	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

$\Gamma=2 \mathrm{~A}_{1}+\mathrm{B}_{1}$
IR active (x, y, z): A_{1} and B_{1} (3 peaks predicted)
Raman active (quadratic): A_{1} and B_{1} (3 peaks predicted)
\rightarrow The mer isomer is expected to have $\underline{3 \text { peaks in both its IR }}$ and Raman spectra.

Summary

Group theory can tell us which molecules are chiral, possess dipole moments, possess chemically identical groups, and other symmetryrelated properties

We can use group theory to determine the vibrational modes of molecules. Procedure:

- Determine point group of molecule
- Determine reducible representation for vectors of interest
- Reduce this representation to its irreducible components (modes)
- If desired, assign the modes to the different motions (rotations, translations, stretches, bends, wags, twists, etc.)
- If desired, read off which modes are IR/Raman active

To dig deeper, check out: Cotton, F. A. Chemical Applications of Group Theory.

