Coordination Chemistry II: Jahn-Teller, Square Planar Complexes, Orbital Overlap Method, and Electron Counting

Chapter 10 and Section 13.3

Monday, November 30, 2015

Jahn-Teller Distortions

Jahn-Teller Theorem: electron configurations with unequal occupancy of degenerate orbitals are not stable.

A complex with such a configuration will undergo a Jahn-Teller distortion to lower its energy.

Jahn-Teller Distortions

Jahn-Teller Theorem: electron configurations with unequal occupancy of degenerate orbitals are not stable.

Various types of distortions are possible (tetragonal, trigonal, etc.).

Jahn-Teller Distortions

Jahn-Teller Theorem: electron configurations with unequal occupancy of degenerate orbitals are not stable.

Only some complexes can lower their energy by distorting:

Occurrence of Jahn-Teller Effects

Partially occupied e_g orbitals (M–L σ^*) lead to more pronounced distortions than partially-occupied t_{2g} orbitals (non-bonding).

Number of Electrons	1	2	3	4	5	6	7	8	9	10
High-spin Jahn-Teller	w	w		S		w	w		S	
Low-spin Jahn-Teller	W	W		W	W		S		S	

w = weak Jahn-Teller effect expected (t_{2g} orbitals unevenly occupied); s = strong Jahn-Teller effect expected (e_g orbitals unevenly occupied); No entry = no Jahn-Teller effect expected.

Strong Jahn-Teller Effect

Weak Jahn-Teller Effect

$$e_g$$
 — e_g — t_{2g} \downarrow \downarrow d^2

$$e_g - t_{2g}$$

Square Planar Complexes

Consider a CFT diagram of a tetragonal elongation taken to its extreme:

CFT of Square Planar Complexes

Square Planar Complexes

Angular Overlap Method

The AOM provides a way to estimate the impact of metal-ligand interactions on the energy of the *d* orbitals (only used on *d* orbitals!).

 e_{σ} is a negative number because the in-phase or bonding interaction is favorable

Remember for an octahedral complex in the σ -only case only the d_{z^2} and $d_{x^2-y^2}$ orbitals interact with ligands

total energy –3e_σ

total energy -3e_σ

σ-ML₆ Octahedral MO Diagram

Using the AOM

The usefulness of the AOM is that it gives a good approximation of the energies of the metal *d* orbitals in different coordination geometries.

- the metal d orbitals are the frontier orbitals in most coordination complexes
- the AOM can be used to predict changes to the metal d orbitals if the coordination geometry is changed.

TABLE 10.10 Angular Overlap Parameters: Sigma Interactions

Oct	ctahedral Positions Tetrahedral Posit		ions Trigonal Bipyramidal Positions							
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c} 111 \\ 12 \\ M \\ 2 \\ 6 \end{array} $							
1	Ligand Positions for Co Geometries	Sigma Interactions (in units of e_{σ}) Metal d Orbital								
CN	Shape	Positions	Ligand Position	z ²	x ² -y ²	ху	XZ	yz		
2	Linear	1,6	1	1	0	0	0	0		
3	Trigonal	2, 11, 12	2	1/4	$\frac{3}{4}$	0	0	0		
3	T shape	1, 3, 5	3	$\frac{1}{4}$	$\frac{3}{4}$	0	0	0		
4	Tetrahedral	7, 8, 9, 10	4	$\frac{1}{4}$	$\frac{3}{4}$	0	0	0		
4	Square planar	2, 3, 4, 5	5	$\frac{1}{4}$	34	0	0	0		
5	Trigonal bipyramidal	1, 2, 6, 11, 12	6	1	0	0	0	0		
5	Square pyramidal	1, 2, 3, 4, 5	7	0	0	1/3	$\frac{1}{3}$	$\frac{1}{3}$		
6	Octahedral	1, 2, 3, 4, 5, 6	8	0	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$		
			9	0	0	1/3	$\frac{1}{3}$	$\frac{1}{3}$		
			10	0	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$		
			11	$\frac{1}{4}$	$\frac{3}{16}$	9 16	0	0		
			12	$\frac{1}{4}$	$\frac{3}{16}$	9	0	0		

Using the AOM

The usefulness of the AOM is that it gives a good approximation of the energies of the metal *d* orbitals in different coordination geometries.

- · the metal d orbitals are the frontier orbitals in most coordination complexes
- the AOM can be used to predict changes to the metal d orbitals if the coordination geometry is changed.

18 Electron Rule (Section 13.3)

The 18 electron rule is a loose formalism for describing stable electron configurations for some transition metal coordination complexes.

- 18 electrons is the maximum number of electrons that can be accommodated by the metal nd, (n+1)s, and (n+1)p valence orbitals.
- · really the 18 electron rule is an extension of the octet rule to include d orbitals
- the octet rule and the 18 electron rule are alternately know as the Effective Atomic Number (EAN) rule.

σ-Only ML₆ Octahedral MO Diagram

18 Electron Rule

The 18 electron rule is a loose formalism for describing stable electron configurations for some transition metal coordination complexes.

- •18 electrons is the maximum number of electrons that can be accommodated by the metal nd, (n+1)s, and (n+1)p valence orbitals.
- •really the 18 electron rule is an extension of the octet rule to include d orbitals
- •the octet rule and the 18 electron rule are alternately know as the Effective Atomic Number (EAN) rule.

There are two methods for determining the total valence electron count for a transition metal complex

- Donor-Pair (ionic) counting method every ligand coordinated to the metal is considered to be a Lewis Base (i.e., a two electron donor)
 - :NH₃, :PR₃, etc, are neutral Lewis Bases
 - · :CI⁻, :CH₃⁻, etc, are anionic Lewis Bases

Donor-Pair Method - Example 1

1. Remove all ligands as Lewis bases (closed octet on donor atom)

2 :PMe₃

4 :CH₃⁻

tetramethylbis(trimethylphosphane)manganese

2. Determine the charge left on the metal after removing the Lewis Base ligands.

in order to balance charge, the manganese must be 4+, this is the metal oxidation state

3. Using the metal oxidation state, determine the number of metal *d* electrons

#d electrons = #valence electrons in neutral metal – metal oxidation state #d electrons = 7 - (+4) = 3

4. Add the number of metal *d* electrons to the number of electrons donated by the ligands to get the total valence electron count.

2 :PMe₃ 4 e⁻
4 :CH₃⁻ 8 e⁻
Mn^{IV} 3 e⁻
15 e⁻

So we'd say that MnMe₄(PMe₃)₂ is a d^3 Mn^{IV} 15-electron complex

Donor Pair Method - Example 2

1. Remove all ligands as Lewis bases (closed octet on donor atom)

:CI-

pentaamminechlorocobalt (2+)

2. Determine the charge left on the metal after removing the Lewis Base ligands.

in this case the charge from removing the Cl⁻ must be added to the overall charge on the complex, giving us Co^{III}

3. Using the metal oxidation state, determine the number of metal *d* electrons

#d electrons = #valence electrons in neutral metal – metal oxidation state #d electrons = 9 - (+3) = 6

4. Add the number of metal *d* electrons to the number of electrons donated by the ligands to get the total valence electron count.

So [Co(NH₃)₅Cl]²⁺ is a *d*⁶ Co^{III} 18-electron complex

18 Electron Rule

The 18 electron rule is a loose formalism for describing stable electron configurations for some transition metal coordination complexes.

- •18 electrons is the maximum number of electrons that can be accommodated by the metal nd, (n+1)s, and (n+1)p valence orbitals.
- •really the 18 electron rule is an extension of the octet rule to include d orbitals
- •the octet rule and the 18 electron rule are alternately know as the Effective Atomic Number (EAN) rule.

There are two methods for determining the total valence electron count for a transition metal complex

- •Donor-Pair (ionic) counting method every ligand coordinated to the metal is considered to be a Lewis Base (i.e., a two electron donor)
 - :NH₃, :PR₃, etc, are neutral Lewis Bases
 - :Cl⁻, :CH₃⁻, etc, are anionic Lewis Bases
- Neutral Ligand counting method every ligand coordinated to the metal is considered to be a neutral species
 - :NH₃, :PR₃, etc, are neutral two-electron donors to the metal
 - · · CI, · CH₃, etc, are neutral one-electron donors to the metal

Neutral Ligand Method - Example 1

1. Remove all ligands as neutral fragments, which leaves a neutral metal

tetramethylbis(trimethylphosphane)manganese

2. Add up the electrons donated by the neutral ligands and on the neutral metal to get the total valence electron count

Notice we again determine that $MnMe_4(PMe_3)_2$ is a 15 electron complex

3. We still need to determine the metal oxidation state.

metal OS = #one-electron donor ligands + charge on the complex

metal OS =
$$4 + (+0) = +4$$
 Mn^{IV}

4. Now, using the metal oxidation state, determine the number of metal *d* electrons

#d electrons = #valence electrons in neutral metal – metal oxidation state

#d electrons =
$$7 - (+4) = 3$$

Neutral Ligand Method - Example 2

1. Remove all ligands as neutral fragments, which leaves a neutral metal

5:NH₃

·CI

 Co^0

pentaamminechlorocobalt (2+)

2. Add up the electrons donated by the neutral ligands and on the neutral metal to get the total

valence electron count

5 :NH₃	10 e ⁻
1 ·Cl	1 e ⁻
Co ⁰	9 e-
+2 charge	20 e ⁻ -2 e ⁻
	18 e ⁻

We forgot to account for the charge on the complex, which is 2+

3. Determine the metal oxidation state.

metal OS = #one-electron donor ligands + charge on the complex

metal OS =
$$1 + (+2) = 3 +$$
 CO|||

4. Using the metal oxidation state, determine the number of metal *d* electrons

#d electrons = #valence electrons in neutral metal – metal oxidation state

#d electrons =
$$9 - (+3) = 6$$

18 Electron Rule

There are two methods for determining the total valence electron count for a transition metal complex

- Donor-Pair (ionic) counting method every ligand coordinated to the metal is considered to be a Lewis Base (i.e., a two electron donor)
 - · :NH₃, :PR₃, etc, are neutral Lewis Bases
 - :Cl⁻, :CH₃⁻, etc, are anionic Lewis Bases

Emphasizes metal oxidation state and d electron count

Useful for all coordination complexes

- Neutral Ligand counting method every ligand coordinated to the metal is considered to be a neutral species
 - :NH₃, :PR₃, etc, are neutral two-electron donors to the metal
 - CI, CH₃, etc, are neutral one-electron donors to the metal

Emphasizes EAN

Useful for organometallic and other electron-rich complexes

Examples to try...

hexacarbonylchromium d^6 , Cr⁰
18 electron complex

hexamethylzirconate (2–) d^0 , Zr^{4+} 12 electron complex

dichlorobis(pyridine)iron d^6 , Fe²⁺ 14 electron complex

$$\begin{bmatrix} H_3N & NH_3 \\ H_3N & CI \end{bmatrix}^{+}$$

triamminechloroplatinum (1+) d^8 , Pt²⁺

16 electron complex

pentacyanocobaltate (3–) d^7 , Co²⁺ 17 electron complex

Remember, you should get the same oxidation state, *d*-electron count, and total valence electron count regardless of which counting method you use!