Chem 107: Inorganic Chemistry (40720)

Professor Matt Law

e-mail: lawm@uci.edu
Office Hours: Wed 3:00-4:00p and Thurs 11-noon in NS2 2127

TAs
Juliet Khosrowabadi
e-mail: jkhosrow@uci.edu
Office Hours: Tues 2:00-3:00p, $3^{\text {rd }}$ floor tables, Reines Hall

Kyle Rosenkoetter
e-mail: krosenko@uci.edu Office Hours: Monday 4:00-5:00p, NS1 3213

Class website: http://www.chem.uci.edu/~lawm/107.html

Syllabus

Textbook

- Miessler, G. L.; Fischer, P. J, Tarr, D. A. Inorganic Chemistry. 5th Edition; ISBN 0-321-81105-4.

Lecture Slides

- Lecture slides are posted to the course website as PDF files before or just after each lecture.

Homework

- Sapling Learning online homework (graded), plus suggested problems from textbook (ungraded)

Discussion Sections

- Will begin meeting next week (9/28/15).
- Discussion sessions are optional, but will give you valuable interactive practice with the course material.

Syllabus

Video Lectures

- Videos from last year's lectures are available on class website, courtesy of UCI Open Chemistry Initiative
- Second half of the videos feature Prof. Heyduk, so will be different this year
- Best used as study aid, not regular substitute for attending live lectures

Chemistry 107. Inorganic Chemistry. Lecture 01

Syllabus

Online Homework

- Graded online homework assignments for each chapter via Sapling Learning.
- Sign up here: http://bit.ly/saplinginstructions
- \$30 for the quarter
- 10\% of course grade
- Technology TA: Dr. Katherine Koen, support@saplinglearning.com
- First assignment available next week

Syllabus

Lecture Schedule

- We will cover Chapters 4-11
- Midterm I (Ch. 4,5,7)
- Midterm II (Ch. 6,7,8,9)
- Final (Ch. 4-11)

Week	Date	Chapter(s)	Topics
0	9/25	4	Class Intro, Symmetry Operations
1	9/28	4	Point Groups
	9/30	4	Representations and Character Tables
	10/2	4	Character Tables and One Application of Symmetry
2	10/5	4	A Second Application of Symmetry
	10/7	5	Simple MO Theory
	10/9	5	MO Theory, Part II
3	10/12	5	MO Theory, Part III
	10/14	5	MO Theory, Part IV
	10/16	7	The Crystalline Solid State
4	10/19	7	Crystal Structures
	10/21	7	Thermodynamics and Electronic Structure of Solids
	10/23	4,5, some7	Midterm Exam I
5	10/26	7	Semiconductors, Solar Cells, and Lasers
	10/28	6	Models of Acid-Base Reactions
	10/30	6	Acid-Base Strength
6	11/2	8	Hydrogen, Alkalis \& Alkaline Earths
	11/4	8	Boron and the Carbon Groups
	11/6	8	Carbon Through Noble Gases
7	11/9	9	Coordination Chemistry I: Intro
	11/11		Veteran's Day - No Class
	11/13	9	Coordination Chemistry II: Geometries and Isomers
8	11/16	10	Coordination Chemistry III: Electronic Structure
	11/18	6, rest 7, 8,9	Midterm Exam II
	11/20	10	Ligand Field Theory
9	11/23	10	Jahn-Teller Effect, Orbital Overlap Method, Electron Counting
	11/25	11	Spectroscopy and Multielectron Atoms I
	11/27		Thanksgiving - No Class
10	11/30	11	Spectroscopy and Multielectron Atoms II
	12/2	11	Term Symbols and Selection Rules
	12/4	11	Tanabe-Sugano Diagrams
Finals	12/9	4-11	Final Exam 8-10 AM

- You are responsible for the background material in Chapters 1-3!

Syllabus

Exams

- Two midterms and one final.
- Exams are cumulative.
- There are no make-up exams. If you miss a midterm for an approved reason, the value of the final will be adjusted accordingly. See course syllabus for details.

Date	Assignment	Percentage
Friday, Oct 23		
	rd	Midterm Exam I
Weds, Nov 18 ${ }^{\text {th }}$	Midterm Exam II	30
Wed, Dec 9th $, 8: 00 \mathrm{a}$	Final Exam	40
	Online Homework	10
	Total	100

Chem 107 on the Web

The Chem 107 website is your source for up-to-date information regarding this class.

- http://www.chem.uci.edu/~lawm/107.html
- The class website is accessible through EEE, the UCI Chemistry Department website, google, etc.
- Detailed syllabus, lecture schedule, suggested textbook homework problems and answer keys, lecture slides, links to video lectures, readings, and announcements are available here.

Email Contact

E-mails will only be accepted and answered for UCI email addresses

- Please be courteous and respectful when contacting me or the TAs.
- Just like you, we are very busy and we have many commitments outside of this class.
- To email us please use the format below and we will get back to you ASAP.
- Subject: Chem 107

Dear Professor Law,
I had a question regarding something in lecture/the text/on the exam/etc. Please include as much information as possible so that we can get an answer to you ASAP.

Thanks for your time, Peter/Petra Anteater
UCIID \#

Symmetry in Nature

Symmetry from other planets

Symmetry Elements and Operations

Symmetry Elements

- An element is a geometric object (a plane, line (axis), or point).

Symmetry Operations

- An operation is a movement (reflection, rotation, inversion) carried out with respect to a symmetry element
- To possess a symmetry operation, an object must appear indistinguishable before/after performing the symmetry operation

Element	Operation
mirror plane	reflection in the plane
proper axis	rotation about the axis
improper axis	rotation, followed by reflection in in a plane \perp to the axis
center of inversion	inversion of all atoms thru center

- There are five operations: reflection (σ), proper rotation $\left(C_{n}\right)$, improper rotation (S_{n}), inversion (i), and identity (E)

The Identity

Identity Operation (E)

- the "do nothing" operation (the simplest operation)
- mathematically equivalent to multiplying by 1
- all objects have E

Proper Rotations

Rotation Operation (C_{n})

- a counter-clockwise rotation of $2 \pi / n\left(360^{\circ} / n\right)$ about an axis

Proper Rotations

Rotation Operation (C_{n})

- a counter-clockwise rotation of $2 \pi / n\left(360^{\circ} / n\right)$ about an axis

Proper Rotations

Rotation Operation (C_{n})

- a counter-clockwise rotation of $2 \pi / n\left(360^{\circ} / n\right)$ about an axis

Proper Rotations

Rotation Operation (C_{n})

- a counter-clockwise rotation of $2 \pi / n\left(360^{\circ} / n\right)$ about an axis

Proper Rotations

Rotation Operation (C_{n})

- a counter-clockwise rotation of $2 \pi / n\left(360^{\circ} / n\right)$ about an axis

Proper Rotations

Rotation Operation (C_{n})

- a counter-clockwise rotation of $2 \pi / n\left(360^{\circ} / n\right)$ about an axis

Proper Rotations

Rotation Operation (C_{n})

- a counter-clockwise rotation of $\mathbf{2 \pi} / \boldsymbol{n}(\mathbf{3 6 0} / n)$ about an axis
- the rotation axis with the largest \boldsymbol{n} is called the highest order or principal axis (the C_{6} axis in the case of our snowflake)
- some objects have rotations that are perpendicular to the principal axis

Proper Rotations

Rotation Operation (C_{n})

- a counter-clockwise rotation of $\mathbf{2 \pi} / \boldsymbol{n}(\mathbf{3 6 0} / n)$ about an axis
- the rotation axis with the largest \boldsymbol{n} is called the highest order or principal axis (the C_{6} axis in the case of our snowflake)
- some objects have rotations that are perpendicular to the principal axis
- an object with a C_{n} axis must have zero or n perpendicular C_{2} axes
- the snowflake has coincident C_{6}, C_{3}, and C_{2} axes plus six $\perp C_{2}$ axes

Reflections

Reflection Operation (σ)

- an internal reflection thru a plane of symmetry within an object
- a horizontal mirror plane $\left(\sigma_{h}\right)$ is perpendicular to the principal axis

$\sigma^{n}=E$
when n is even

$\sigma^{n}=\sigma$
when n is odd

Reflections

Reflection Operation (σ)

- an internal reflection thru a plane of symmetry within an object
- a horizontal mirror plane (σ_{h}) is perpendicular to the principal axis
- vertical $\left(\sigma_{v}\right)$ and dihedral $\left(\sigma_{d}\right)$ mirror planes are paralle/ to the principal axis
- \# $\boldsymbol{\sigma}_{v}+\# \boldsymbol{\sigma}_{d}=0$ or \boldsymbol{n}
- our snowflake has one σ_{h}, three σ_{v} and three σ_{d} mirror planes

Inversion

Inversion Operation (i)

- each point is moved along a straight line through the center of the object (the inversion center) to a point an equal distance from the center
- in other words: $(x, y, z) \rightarrow(-x,-y,-z)$ for all points
- an object can have zero or one inversion center
- the snowflake has an inversion center

$$
i^{n}=E \text { when } n \text { is even, } i^{n}=i \text { when } n \text { is odd }
$$

Inversion

Inversion Operation (i)

- octahedra, boxes, squares, rectangles, and parallelograms have inversion centers, but tetrahedra, triangles, and pentagons do not
yes inversion centers

no inversion centers

No center of inversion

Improper Rotations

Improper Rotation Operation (S_{n})

- a rotation followed by a perpendicular reflection (a roto-reflection)

\underline{S}_{4} operation in methane

First S_{4} :

Rotation angle

90°	S_{4}	
180°	C_{2}	$\left(=S_{4}^{2}\right)$
270°	S_{4}^{3}	
360°	E	$\left(=S_{4}^{4}\right)$

Also: $S_{2}=i, S_{1}=\sigma$

- There are S_{3} and S_{6} operations in the snowflake, but we'll illustrate the S_{n} operation with an actual molecule in a minute.

