Chem 107: Inorganic Chemistry (40720)

Professor Matt Law

e-mail: lawm@uci.edu Office Hours: Wed 3:00-4:00p and Thurs 11-noon in NS2 2127

TAs Juliet Khosrowabadi

e-mail: jkhosrow@uci.edu Office Hours: Tues 2:00-3:00p, 3rd floor tables, Reines Hall

Kyle Rosenkoetter

e-mail: krosenko@uci.edu Office Hours: Monday 4:00-5:00p, NS1 3213

Class website: http://www.chem.uci.edu/~lawm/107.html

Textbook

- Miessler, G. L.; Fischer, P. J, Tarr, D. A. *Inorganic Chemistry*.
 5th Edition; ISBN 0-321-81105-4.
- **Lecture Slides**
 - Lecture slides are posted to the course website as PDF files before or just after each lecture.
- Homework
 - Sapling Learning online homework (graded), plus suggested problems from textbook (ungraded)
- **Discussion Sections**
 - Will begin meeting next week (9/28/15).
 - Discussion sessions are optional, but will give you valuable interactive practice with the course material.

Video Lectures

- Videos from last year's lectures are available on class website, courtesy of UCI Open Chemistry Initiative
 - Second half of the videos feature Prof. Heyduk, so will be different this year
 - Best used as study aid, not regular substitute for attending live lectures

Chemistry 107. Inorganic Chemistry. Lecture 01

Online Homework

- Graded online homework assignments for each chapter via Sapling Learning.
 - Sign up here: http://bit.ly/saplinginstructions
 - \$30 for the quarter
 - 10% of course grade
 - Technology TA: Dr. Katherine Koen, support@saplinglearning.com
 - First assignment available next week

٨	Attempts	Score	O Not Set Ø 0/100 O Grad O
	0	0	Guestion 1 of 32
	0	0	
	0	0	sapling sapling
	0	0	What is the point group of CBr4?
	0	0	
	0	0	O C _{4v}
	0	0	O D _{4h}
	0	0	O T _d
0)	0	O C _{4h}
0	J	0	O C _{2v}
0		0	
1	0	0	
0)	0	
0)	0	
0		0	
0		0	
1	0	0	
	0	0	
0		0	😵 Previous 😵 Give Up & View Solution 🤣 Check Answer 😜 Next 🍯 Exit

Lecture Schedule

We will cover Chapters 4-11

- Midterm I (Ch. 4,5,7)
- Midterm II (Ch. 6,7,8,9)
- Final (Ch. 4-11)

Week	Date	Chapter(s)	Topics
0	9/25	4	Class Intro, Symmetry Operations
1	9/28	4	Point Groups
	9/30	4	Representations and Character Tables
	10/2	4	Character Tables and One Application of Symmetry
2	10/5	4	A Second Application of Symmetry
	10/7	5	Simple MO Theory
	10/9	5	MO Theory, Part II
3	10/12	5	MO Theory, Part III
	10/14	5	MO Theory, Part IV
	10/16	7	The Crystalline Solid State
4	10/19	7	Crystal Structures
	10/21	7	Thermodynamics and Electronic Structure of Solids
	10/23	4,5, some7	Midterm Exam I
5	10/26	7	Semiconductors, Solar Cells, and Lasers
	10/28	6	Models of Acid-Base Reactions
	10/30	6	Acid-Base Strength
6	11/2	8	Hydrogen, Alkalis & Alkaline Earths
	11/4	8	Boron and the Carbon Groups
	11/6	8	Carbon Through Noble Gases
7	11/9	9	Coordination Chemistry I: Intro
	11/11		Veteran's Day - No Class
	11/13	9	Coordination Chemistry II: Geometries and Isomers
8	11/16	10	Coordination Chemistry III: Electronic Structure
	11/18	6, rest 7, 8,9	Midterm Exam II
	11/20	10	Ligand Field Theory
9	11/23	10	Jahn-Teller Effect, Orbital Overlap Method, Electron Counting
	11/25	11	Spectroscopy and Multielectron Atoms I
	11/27		Thanksgiving - No Class
10	11/30	11	Spectroscopy and Multielectron Atoms II
	12/2	11	Term Symbols and Selection Rules
	12/4	11	Tanabe-Sugano Diagrams
Finals	12/9	4-11	Final Exam 8-10 AM

• You are responsible for the background material in Chapters 1-3!

Exams

- Two midterms and one final.
- Exams are cumulative.
- There are no make-up exams. If you miss a midterm for an approved reason, the value of the final will be adjusted accordingly. See course syllabus for details.

Date	Assignment	Percentage
Friday, Oct 23 rd	Midterm Exam I	20
Weds, Nov 18 th	Midterm Exam II	30
Wed, Dec 9 th , 8:00a	Final Exam	40
	Online Homework	10
	Total	100

The Chem 107 website is your source for up-to-date information regarding this class.

- http://www.chem.uci.edu/~lawm/107.html
- The class website is accessible through EEE, the UCI Chemistry Department website, google, etc.
- Detailed syllabus, lecture schedule, suggested textbook homework problems and answer keys, lecture slides, links to video lectures, readings, and announcements are available here.

Email Contact

E-mails will only be accepted and answered for UCI email addresses

- Please be courteous and respectful when contacting me or the TAs.
- Just like you, we are very busy and we have many commitments outside of this class.
- To email us please use the format below and we will get back to you ASAP.
 - → Subject: Chem 107

Dear Professor Law,

I had a question regarding something in lecture/the text/on the exam/etc. Please include as much information as possible so that we can get an answer to you ASAP.

Thanks for your time, Peter/Petra Anteater UCI ID #

Symmetry in Nature

Symmetry from other planets

Symmetry Elements and Operations

Symmetry Elements

- An element is a geometric object (a plane, line (axis), or point).
- **Symmetry Operations**
 - An operation is a movement (reflection, rotation, inversion) carried out with respect to a symmetry element
 - To possess a symmetry operation, <u>an object must appear</u> indistinguishable before/after performing the symmetry operation

Element	Operation
mirror plane	reflection in the plane
proper axis	rotation about the axis
improper axis	rotation, followed by reflection in in a plane ⊥ to the axis
center of inversion	inversion of all atoms thru center

• There are five operations: reflection (σ), proper rotation (C_n), improper rotation (S_n), inversion (*i*), and identity (*E*)

The Identity

Identity Operation (E)

- the "do nothing" operation (the simplest operation)
- mathematically equivalent to multiplying by 1
- all objects have E

Rotation Operation (C_n)

Rotation Operation (C_n)

- a counter-clockwise rotation of $2\pi/n$ (360°/*n*) about an axis
- the rotation axis with the largest n is called the <u>highest order</u> or <u>principal axis</u> (the C₆ axis in the case of our snowflake)
- some objects have rotations that are perpendicular to the principal axis

Rotation Operation (C_n)

- a counter-clockwise rotation of $2\pi/n$ (360°/*n*) about an axis
- the rotation axis with the largest n is called the <u>highest order</u> or <u>principal axis</u> (the C₆ axis in the case of our snowflake)
- some objects have rotations that are perpendicular to the principal axis
- an object with a C_n axis must have zero or n perpendicular C_2 axes
- the snowflake has coincident C_6 , C_3 , and C_2 axes plus six $\perp C_2$ axes

Reflections

Reflection Operation (σ)

- $\boldsymbol{\cdot}$ an internal reflection thru a plane of symmetry within an object
- a horizontal mirror plane (σ_h) is *perpendicular* to the principal axis

$$\sigma^n = E$$

when *n* is even
 $\sigma^n = \sigma$
when *n* is odd

Reflections

Reflection Operation (σ)

- $\boldsymbol{\cdot}$ an internal reflection thru a plane of symmetry within an object
- a horizontal mirror plane (σ_h) is *perpendicular* to the principal axis
- vertical (σ_v) and dihedral (σ_d) mirror planes are *parallel* to the principal axis
- $\#\sigma_v + \#\sigma_d = 0$ or n
- our snowflake has one σ_h , three σ_v and three σ_d mirror planes

Inversion

Inversion Operation (*i*)

- each point is moved along a straight line through the center of the object (the *inversion center*) to a point an equal distance from the center
- in other words: $(x,y,z) \rightarrow (-x,-y,-z)$ for all points
- an object can have zero or one inversion center
- the snowflake has an inversion center

Inversion

Inversion Operation (*i*)

 octahedra, boxes, squares, rectangles, and parallelograms have inversion centers, but tetrahedra, triangles, and pentagons do not

Improper Rotation Operation (S_n)

• a rotation followed by a perpendicular reflection (a roto-reflection)

S₄ operation in methane

Rotation angle	Symmetry operation		
90°	S_{4}		
180°	$C_2 (= S_4^2)$		
270°	S_{4}^{3}		
360°	$E = (=S_4^4)$		

Also:
$$S_2 = i$$
, $S_1 = \sigma$

• There are S_3 and S_6 operations in the snowflake, but we'll illustrate the S_n operation with an actual molecule in a minute.