Symmetry and Point Groups

Chapter 4
Monday, September 28, 2015

Symmetry in Molecules: Staggered Ethane

So far we can say staggered ethane has three operations: E, C_{3}, and $C_{3}{ }^{2}$

Symmetry in Molecules: Staggered Ethane

So we add three more operations: $C_{2}, C_{2}{ }^{\prime}$, and $C_{2}{ }^{\prime \prime}$

Symmetry in Molecules: Staggered Ethane

Now we've added three reflections: $\sigma_{d}, \sigma_{\mathrm{d}}$ ', and $\sigma_{\mathrm{d}}{ }^{\prime \prime}$ Note that there is no σ_{h} for staggered ethane!

Symmetry in Molecules: Staggered Ethane

Ethane also has an inversion center that lies at the midpoint of the C-C bond (the center of the molecule).

Symmetry in Molecules: Staggered Ethane

Finally, staggered ethane also has an improper rotation axis.
It is an $S_{6}\left(S_{2 n}\right)$ axis that is coincident with the C_{3} axis.

An S_{6} rotation is a combination of a C_{6} followed by a perpendicular reflection (i.e., a σ_{h}).

Symmetry in Molecules: Staggered Ethane

Finally, staggered ethane also has an improper rotation axis.
It is an $S_{6}\left(S_{2 n}\right)$ axis that is coincident with the C_{3} axis.

Symmetry in Molecules: Staggered Ethane

It turns out that there are several redundancies when counting up the unique improper rotations:

\mathbf{S}_{6} operation	equivalent operation
S_{6}	S_{6}
$S_{6}{ }^{2}$	C_{3}
$S_{6}{ }^{3}$	i
$S_{6}{ }^{4}$	$C_{3}{ }^{2}$
$S_{6}{ }^{5}$	$S_{6}{ }^{5}$
$S_{6}{ }^{6}$	E

So the improper rotations add only two unique operations.

Symmetry in Molecules: Staggered Ethane

Let's sum up the symmetry operations for staggered ethane:

Operation type	Number
Identity	$\mathbf{1}$
Rotations	$5\left(2 C_{3}+3 C_{2}\right)$
Reflections	$3\left(3 \sigma_{\mathrm{d}}\right)$
Inversion	1
Improper Rotations	$2\left(S_{6}+S_{6}{ }^{5}\right)$
Total	12

- These 12 symmetry operations describe completely and without redundancy the symmetry properties of the staggered ethane molecule.
- The complete set of symmetry operations possessed by an object defines its point group. For example, the point group of staggered ethane is $D_{3 d}$.
- The total number of operations is called the order (h) of a point group. The order is always an integer multiple of n of the principal axis. For staggered ethane, $h=4 n(4 \times 3=12)$.

Summary

Symmetry Elements and Operations

- elements are imaginary points, lines, or planes within the object.
- operations are movements that take an object between equivalent configurations - indistinguishable from the original configuration, although not necessarily identical to it.
- for molecules we use "point" symmetry operations, which include rotations, reflections, inversion, improper rotations, and the identity. At least one point remains stationary in a point operation.
- some symmetry operations are redundant (e.g., $S_{6}{ }^{2} \equiv C_{3}$); in these cases, the convention is to list the simpler operation.

Low-Symmetry Point Groups

These point groups only contain one or two symmetry operations
C_{1}
$\{E\}$

High-Symmetry Point Groups

These point groups are high-symmetry groups derived from Platonic solids
T_{d}
$\left\{E, 8 C_{3}, 3 C_{2}, 6 S_{4}\right.$,
$\left.6 \sigma_{d}\right\}=24$

$$
\begin{array}{cc}
O_{h} & I_{h} \\
\left\{E, 8 C_{3}, 6 C_{2}, 6 C_{4}, 3 C_{2},\right. & \left\{E, 12 C_{5}, 12 C_{5}^{2}, 20 C_{3},\right. \\
\left.i, 6 S_{4}, 8 S_{6}, 3 \sigma_{h}, 6 \sigma_{d}\right\}=48 & 15 C_{2}, i, 12 S_{10}, 12 S_{10^{3}}, \\
& \left.20 S_{6}, 15 \sigma\right\}=120
\end{array}
$$

Buckminsterfullerene
(C_{60})

The five regular Platonic solids are the tetrahedron $\left(T_{d}\right)$, octahedron $\left(O_{h}\right)$, cube $\left(O_{h}\right)$, dodecahedron $\left(I_{h}\right)$, and icosahedron $\left(I_{h}\right)$

High-Symmetry Point Groups

In addition to T_{d}, O_{h}, and I_{h}, there are corresponding point groups that lack the mirror planes (T, O, and I).

Adding an inversion center to the T point group gives the T_{h} point group.

TABLE 4.5 Symmetry Operations for High-Symmetry Point Groups and Their Rotational Subgroups

Point Group	Symmetry Operations									
I_{h}	E	$12 C_{5}$	$12 C_{5}{ }^{2}$	$20 C_{3}$	$15 C_{2}$	i	$12 S_{10}$	$12 S_{10}{ }^{3}$	$20 S_{6}$	15σ
I	E	$12 C_{5}$	$12 C_{5}{ }^{2}$	$20 C_{3}$	$15 C_{2}$					
O_{h}	E	$8 C_{3}$	$6 C_{2}$	$6 C_{4}$	$3 C_{2}\left(\equiv C_{4}{ }^{2}\right)$	i	$6 S_{4}$	$8 S_{6}$	$3 \sigma_{h}$	$6 \sigma_{d}$
O	E	$8 C_{3}$	$6 C_{2}$	$6 C_{4}$	$3 C_{2}\left(\equiv C_{4}{ }^{2}\right)$					
T_{d}	E	$8 C_{3}$	$3 C_{2}$				$6 S_{4}$			$6 \sigma_{d}$
T	E	$4 C_{3}$	$4 C_{3}{ }^{2}$	$3 C_{2}$						
T_{h}	E	$4 C_{3}$	$4 C_{3}{ }^{2}$	$3 C_{2}$			i	$4 S_{6}$	$4 S_{6}{ }^{5}$	$3 \sigma_{h}$

T_{h} example:

Linear Point Groups

These point groups have a C_{∞} axis as the principal rotation axis

$$
\begin{gathered}
C_{\infty v} \\
\left\{E, 2 C_{\infty}{ }^{\phi}, \cdots, \infty \sigma_{v}\right\}
\end{gathered}
$$

$$
\begin{gathered}
D_{\infty h} \\
\left\{E, 2 C_{\infty}{ }^{\phi}, \cdots, \infty C_{2}, i,\right. \\
\left.2 S_{\infty}{ }^{\phi}, \infty \sigma_{v}\right\}
\end{gathered}
$$

$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$

D Point Groups

These point groups have $n C_{2}$ axes perpendicular to a principal axis $\left(C_{n}\right)$
D_{n}
$\left\{E,(n-1) C_{n}, n \perp C_{2}\right\}$

$D_{n h}$

\{depends on n, with $h=4 n\}$
$D_{n d}$
\{depends on n, with $h=4 n\}$

D_{3}

(propadiene)

$$
D_{3 h} \quad D_{2 d}
$$

C Point Groups

These point groups have a principal axis $\left(C_{n}\right)$ but no $\perp C_{2}$ axes

$C_{n v}$
$\left\{E,(n-1) C_{n}, n \sigma v\right\}$ Cnh
\{depends on n, with $h=2 n\}$

C_{2}
$\left\{E, C_{2}\right\}$

$C_{3 v}$
$\left\{E, 2 C_{3}, 3 \sigma_{v}\right\}$

$C_{2 h}$
$\left\{E, C_{2}, i, \sigma_{h}\right\}$

S Point Groups

If an object has a principal axis $\left(C_{n}\right)$ and an $S_{2 n}$ axis but no $\perp C_{2}$ axes and no mirror planes, it falls into an $S_{2 n}$ group
$S_{2 n}$
\{depends on n, with $h=2 n\}$

