Symmetry and Point Groups

Chapter 4

Monday, September 28, 2015

So far we can say staggered ethane has three operations: *E*, C_3 , and C_3^2

So we add three more operations: C_2 , C_2' , and C_2''

Now we've added three reflections: σ_d , σ_d' , and σ_d'' Note that there is no σ_h for staggered ethane!

Ethane also has an inversion center that lies at the midpoint of the C-C bond (the center of the molecule).

Finally, staggered ethane also has an improper rotation axis. It is an S_6 (S_{2n}) axis that is coincident with the C_3 axis.

Finally, staggered ethane also has an improper rotation axis. It is an S_6 (S_{2n}) axis that is coincident with the C_3 axis.

It turns out that there are several redundancies when counting up the unique improper rotations:

So the improper rotations add only two unique operations.

Let's sum up the symmetry operations for staggered ethane:

	Operation type	Number
H _a H _d	Identity	1
H _e	Rotations	5 (2 <i>C</i> ₃ + 3 <i>C</i> ₂)
H _c ⁻ CC ⁻	Reflections	3 ($3\sigma_{d}$)
H. H.	Inversion	1
I Ib I If	Improper Rotations	2 $(S_6 + S_6^5)$
	Total	12

- These 12 symmetry operations describe completely and without redundancy the symmetry properties of the staggered ethane molecule.
- The complete set of symmetry operations possessed by an object defines its <u>point group</u>. For example, the point group of staggered ethane is D_{3d} .
- The total number of operations is called the <u>order</u> (*h*) of a point group. The order is always an integer multiple of *n* of the principal axis. For staggered ethane, h = 4n (4 × 3 = 12).

Symmetry Elements and Operations

- elements are imaginary points, lines, or planes within the object.
- operations are movements that take an object between equivalent configurations – indistinguishable from the original configuration, although not necessarily identical to it.
- for molecules we use "point" symmetry operations, which include rotations, reflections, inversion, improper rotations, and the identity. At least one point remains stationary in a point operation.
- some symmetry operations are redundant (e.g., $S_6^2 \equiv C_3$); in these cases, the convention is to list the simpler operation.

Low-Symmetry Point Groups

These point groups only contain one or two symmetry operations

These point groups are high-symmetry groups derived from Platonic solids

The five regular Platonic solids are the tetrahedron (T_d) , octahedron (O_h) , cube (O_h) , dodecahedron (I_h) , and icosahedron (I_h)

High-Symmetry Point Groups

In addition to T_d , O_h , and I_h , there are corresponding point groups that lack the mirror planes (T, O, and I).

Adding an inversion center to the T point group gives the T_h point group.

Point Group	Symmetry Operations									
I _h	E	$12C_5$	$12C_5^2$	_	15C ₂	i	$12S_{10}$	$12S_{10}^{3}$	$20S_{6}$	15σ
O_h	E E	12C ₅ 8C ₃	$12C_5^2$ $6C_2$	$20C_3$ $6C_4$	$15C_2$ $3C_2 (\equiv C_4^2)$	i	$6S_4$	8 <i>S</i> ₆	$3\sigma_h$	$6\sigma_d$
0	E	8 <i>C</i> ₃	$6C_2$	$6C_4$	$3C_2 (\equiv C_4^2)$					
T_d	E	8C ₃	$3C_2$				$6S_4$			$6\sigma_d$
Т	E	$4C_3 4C_3^2$	$3C_2$							
T_h	E	$4C_3 4C_3^2$	$3C_2$			i	$4S_6$	$4S_6^5$	$3\sigma_h$	

TABLE 4.5 Symmetry Operations for High-Symmetry Point Groups and Their Rotational Subgroups

Fal(C₆H₆N)₆]²

Linear Point Groups

These point groups have a C_{∞} axis as the principal rotation axis

D Point Groups

These point groups have nC_2 axes perpendicular to a principal axis (C_n)

 D_n {*E*, (*n*-1)*C*_n, *n* \perp *C*₂} D_{nh} {depends on n, with h = 4n} D_{nd} {depends on n, with h = 4n}

C Point Groups

These point groups have a principal axis (C_n) but no $\perp C_2$ axes

C_n {E, (n-1)C_n}

C_{nv} {E, (n-1)C_n, nσ_v} C_{nh} {depends on n, with h = 2n}

S Point Groups

If an object has a principal axis (C_n) and an S_{2n} axis but no $\perp C_2$ axes and no mirror planes, it falls into an S_{2n} group

