Atomistic Modeling of Sulfur Vacancy Diffusion Near Iron Pyrite Surfaces

Y. N. Zhang,§‡, M. Law,‖ and R. Q. Wu§

†Chengdu Green Energy and Green Manufacturing Technology R&D Center, Chengdu, Sichuan 610207, China
‡Beijing Computational Science Research Center, Beijing, 100084, China
§Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
‖Department of Chemistry, University of California, Irvine, California 92697, United States

ABSTRACT: Through density functional calculations, we investigated the diffusion of isolated sulfur vacancies (VS) from the bulk of iron pyrite (cubic FeS2) to the (100) and (111) surfaces. The influence of vacancy depth on the vacancy formation energy and the activation energy for vacancy diffusion are discussed. Significantly, we find that VS defects tend to migrate toward stoichiometric and sulfur-rich surfaces through sequential “intra-dimer” and “inter-dimer” hops. We find a pre-exponential constant (Do) of 9 × 10−10 m2 s−1 and an activation energy (E) of 1.95 eV for sulfur vacancy diffusion in bulk pyrite, corresponding to a vacancy diffusion coefficient of 9 × 10−46 m2 s−1 at 25 °C and 5 × 10−16 m2 s−1 at 600 °C. The activation energy is smaller near the surface (e.g., E = 1.5 eV near the stoichiometric (100) surface), resulting in faster vacancy diffusion near the surface than in the bulk. Using the formation enthalpy of VS at the (100) surface, we find a sulfur diffusivity in bulk pyrite of 7 × 10−47 m2 s−1 at 25 °C and 2 × 10−20 m2 s−1 at 600 °C. The calculated Do values are in reasonable agreement with experiment only at intermediate temperatures (∼275–625 °C). Our results show that bulk and near-surface sulfur vacancies can be healed in sulfur-rich conditions at reasonably high temperatures. The mechanism of vacancy diffusion presented here should be useful in managing VS defects during the fabrication of high-quality pyrite samples for solar energy conversion applications.

1. INTRODUCTION

The control of point defects in solids is a crucial issue for the optimal performance of many materials, including semiconductors, high-k dielectrics, and steels. Iron pyrite (FeS2) is a promising semiconductor for use in photovoltaic and photoelectrochemical cells due to its suitable band gap, excellent optical absorptivity, and essentially infinite abundance of iron and sulfur in the planet’s crust. The main hurdle for the development of pyrite solar cells is its unexpectedly low conversion efficiency, ~3%, which is primarily due to the low open circuit voltage, VOC = 200 meV. Electronic states produced by surfaces and bulk defects are often identified as the ultimate source of the low VOC. In addition, ab initio simulations show that some defects may reduce the band gap of pyrite and hence degrade its photovoltaic performance. Fe vacancies (VFe) and S vacancies (VS) are among the simplest point defects in pyrite. Despite the relatively high formation energy of VS predicted by several recent density functional theory (DFT) studies (2.27–2.7 eV under sulfur-poor conditions, which implies a negligible equilibrium VS concentration), a high concentration of sulfur vacancies has been reported using techniques such as high resolution X-ray diffraction (HRXRD), photoemission of adsorbed Xe (PAX), scanning tunneling microscopy (STM), and atomic emission spectroscopy (AES). Furthermore, the stoichiometry of pyrite samples has been found to change significantly with temperature and surface conditions. Therefore, it is crucial to optimize the processing conditions for the removal of sulfur vacancies in pyrite films, starting from an understanding of the diffusion mechanism of individual vacancies near the surface.

The calculated surface energies of stoichiometric pyrite surfaces increase in the order (100) < (111) < (210) < (110). These four surfaces are commonly observed in experiments, for example, in the growth of macroscopic single crystals and shape-controlled nanocrystals. In this paper, we report DFT results of sulfur vacancy diffusion near the (100) and (111) surfaces as a function of surface stoichiometry. Our results show that sulfur vacancies tend to diffuse toward the surface for all the cases studied here, with potential energy profiles that depend strongly on the surface stoichiometry.

2. COMPUTATIONAL METHODOLOGY

As sketched in Figure 1a, pyrite FeS2 adopts a NaCl-like structure, with a face-centered cubic sublattice of diamagnetic Fe2+ ions and (111)-oriented S2− dimers occupying the anion positions. Each Fe ion is octahedrally coordinated to six S ions, and each S ion has three Fe neighbors and one S neighbor.
SO2-rich, H2S-rich, and S-rich conditions, respectively. We have shown that these three surfaces are thermodynamically stable in the surface, as shown in Figure 1b. Our previous DFT studies have used a periodic slab of 11 FeS2 atomic layers and a vacuum layer 17 Å thick to model V5 diffusion near the (100) surfaces. Our previous work shows that this 11-layer slab model is sufficiently thick to reproduce the physical and electronic structure of bulk pyrite in the middle layers. The slabs were constructed with two identical surfaces in order to avoid artificial electric fields in the vacuum during studies of polar surfaces. A (2 × 2) lateral supercell was used with one sulfur ion removed from a specific sulfur layer. In this paper, we denote a sulfur atom in the nth sulfur atomic layer as S_n (n = 1–6) and a sulfur vacancy in this layer as V_S_n as depicted in Figure 1c.

The FeS2(111) surface is more complex, with five different surface terminations. One surface is Fe-terminated and the others contain 1–4 layers of S ions (denoted by (111)-Fe, (111)-S, (111)-2S, (111)-3S, and (111)-4S, respectively, cf., Figure 5 in ref 39). Here, we performed calculations for the stoichiometric (111)-2S, and S-rich (111)-3S and -4S surfaces. A periodic hexagonal slab model with nine FeS2 atomic layers and a vacuum layer 18 Å thick was used. To simulate a similar vacancy concentration as for the (100) surface, we adopted a (2 × 1) lateral supercell with more than 230 atoms, as depicted in Figure 1d.

Spin-polarized density functional calculations were performed using the Vienna Ab initio Simulation Package (VASP) with the projector augmented wave (PAW) method. The generalized gradient approximation (GGA) was adopted to describe the exchange-correlation interaction among electrons, and a Hubbard U of 2 eV was added for Fe 3d orbitals. We used an energy cutoff of 350 eV for the plane-wave basis expansion. The convergence of our results against the number of k-points in the Brillouin zone was carefully monitored in each case. The lattice constant in the lateral plane was fixed at the optimized value for bulk pyrite, a = 5.422 Å. The Fe and S atoms in the central layer were fixed at their bulk positions, whereas all other atoms were fully relaxed until forces on them became smaller than 0.01 eV/Å.

Figure 2. (a) Vacancy formation energy, ΔH_v, as a function of vacancy depth for FeS2(100) surfaces with three different stoichiometries. The black squares show the full potential energy profile (including energy barriers for each hop) for Surf(0). The energy barrier of the "inter-dimer" motion in bulk pyrite is indicated with dark cyan crossed squares. The inset is the atomic structure of the V_S_0 ↔ S_4 transition state (highlighted by the green arrow). The yellow and blue spheres denote S and Fe atoms. The green and orange spheres represent the vacancy and migrating sulfur atom, respectively. (b) Potential energy profiles for V5 hopping between the first subsurface sulfur layer and the outermost sulfur layer of the three (100) surfaces and the (111)-4S surface. The profiles correspond to V_S_5 ↔ S_2 for Surf(−1), V_S_2 ↔ S_1 for Surf(0), V_S_1 ↔ S_0 for Surf(+1), and V_S_4 ↔ S_2 for (111)-4S surfaces. The data are plotted relative to the enthalpies of a V5 on each outermost sulfur layer.
3. RESULTS AND DISCUSSION

To annihilate a sulfur vacancy in bulk pyrite, it is conceivable that sulfur atoms could move from the surface through the crystal by interstitial diffusion, i.e., hopping through the unoccupied tetrahedral interstitial sites in the FCC Fe lattice. However, our calculations show that the formation energy of a sulfur interstitial is prohibitively high (>8 eV) for this mechanism to occur. The calculated activation energy for sulfur interstitial diffusion is also very high. For example, a sulfur atom at Surf(+1) moving from the topmost layer to VS6 needs to overcome energy barriers as large as 4.1 eV. Given typical annealing temperatures, it is very unlikely that VS centers are healed in this direct way. Instead, we believe that vacancy diffusion, i.e., sequential hopping of sulfur atoms into a vacancy leading to migration of the vacancy through the crystal and eventually to the surface, is the most reasonable mechanism of VS annihilation.

To determine the feasibility of vacancy diffusion, we calculated the position dependence of the formation enthalpy of VS according to

\[\Delta H_f = E_{\text{vac}} - E_{\text{perf}} + \mu_S \]

Here, \(E_{\text{vac}} \) and \(E_{\text{perf}} \) are the energies of surface slabs with and without vacancies, respectively. The chemical potential of one S atom, \(\mu_S \), is a parameter to simulate the change of environment from oxidizing conditions to S-rich conditions (e.g., \(\mu_S = -6.32 \) eV in SO2 and \(\mu_S = 0 \) for an isolated sulfur atom). Using \(\mu_S = -3.77 \) eV, which corresponds to sulfur-poor conditions, the calculated vacancy formation energies at the three (100) surfaces are shown in Figure 2 as a function of the VS depth. Clearly, \(\Delta H_f \) decreases as the vacancy moves from the bulk to the surface, indicating that bulk vacancies have an energetic driving force for diffusing toward the surface. This is understandable since it is easier for surface atoms than bulk atoms to adjust their positions and charge states to accommodate the vacancy. The only exception is for Surf(−1), where the calculated \(\Delta H_f \) of VS2 is higher than that of VS3 by 0.4 eV. In this case, the vacancy is likely to be trapped in subsurface layer S3 instead of moving to the topmost S2 layer that is already sulfur poor. The calculated \(\Delta H_f \) for VS1 of Surf(0) is only 0.42 eV, much lower than \(\Delta H_f = 2.36 \) eV for bulk pyrite under the same sulfur-poor conditions. Accordingly, the vacancy density at the surface should be rather high, particularly under weakly oxidizing growth or annealing conditions. The calculated equilibrium vacancy concentration, \([V_S]_e \), which is determined by \([V_S]_e = [V_S]_{max} \exp(\Delta H_f/k_B T) \)

with \([V_S]_{max} = 5 \times 10^{22} \text{ cm}^{-3} \), changes from \(3 \times 10^{-8} \text{ cm}^{-3} \) for VS6 to \(5 \times 10^{15} \text{ cm}^{-3} \) for VS1 at Surf(0) at room temperature. At typical synthesis/annealing temperatures of 300–600 °C, the expected vacancy concentration becomes \(10^{-7}–10^{13} \text{ cm}^{-3} \) in the bulk and \(10^{0}–10^{26} \text{ cm}^{-3} \) near the surface. Note that for the same sulfur chemical potential, \(\Delta H_f \) for VS0 in Surf(+1) becomes negative (−0.62 eV), as shown by the red circles in Figure 2, indicating spontaneous formation of VS0 at Surf(+1).

This is consistent with our previous study that showed that Surf(+0.87S) has a lower surface energy than Surf(+1) at \(\mu_S = -3.77 \) eV. It is known that Surf(0) is the most stable (100) surface in the range of \(-3.85 \) eV < \(\mu_S < -3.17 \) eV and that Surf(+1) is stable over a large range of \(\mu_S \) in sulfur-rich conditions, with a lower surface energy than a Surf(+1) + Vs surface. Therefore, we believe that the continuous diffusion of VS to the surface will not affect the surface stoichiometry of pyrite samples that are immersed in a sulfur reservoir with a fixed \(\mu_S \).

While the diffusion of VS toward the surface is energetically favorable, the energy barriers along the various possible trajectories govern the kinetics of this diffusion process. We calculated the potential energy profile for vacancy diffusion from the bulk to Surf(0) (Figure 2). To determine the lowest-energy trajectory for vacancy motion, we moved the neighboring sulfur atom toward the vacancy along the surface normal in 0.3 Å steps and, at each step, allowed the lateral positions of all atoms to relax until forces on them became smaller than 0.01 eV/Å. We find an energy barrier of only 0.23 eV for VS6 hopping into S5. This low barrier is understandable given that these two sites belong to the same original S–S dimer. Indeed, at equilibrium the S5 atom of the original dimer is displaced 0.16 Å toward the VS6 site relative to its position in the perfect crystal, while displacement of the surrounding Fe atoms is negligible. Bader charge analyses show that, while the charge state of Fe atoms remain unchanged (+0.88 e), the charge of the S5 atom near VS6 becomes −0.80 e, almost double that of a sulfur ion in the perfect crystal. This charge distribution is very similar for an isolated VS center in bulk pyrite. Overall, the “intra-dimer” vacancy hop depicted in Figure 1a appears to be quite facile, even at room temperature.

Next, we calculated the barrier for the motion of a vacancy to an adjacent S–S dimer, i.e., the “inter-dimer” vacancy hop sketched in Figure 1a. This hop involves the movement of an S atom from its normal SFe3 tetrahedral coordination and across the intervening (111) plane of hexagonal packed Fe atoms to reach the vacancy. Our results show that the lowest-energy path involves an S atom moving from its lattice site in a (111) direction, passing almost exactly through the center of the Fe3 triangle of its original coordination polyhedron, and then turning to move directly to the VS site, tracing an overall bent trajectory. We find an energy barrier of 1.5 eV for VS6 hopping into S4 (Figure 2a), suggesting that inter-dimer vacancy hopping is rate limiting and that fairly high temperatures are needed to activate diffusion. This value is significantly smaller than the calculated barrier of 1.95 eV for the same process in the crystal bulk, as shown in Figure 2a (crossed squares). Interestingly, we found that the energy barrier for a positively charged sulfur vacancy in a (2 × 2 × 2) bulk pyrite supercell drops to 1.91 eV, and is slightly lower in a larger (3 × 3 × 3) supercell when atoms have more rooms to relax in the transition state. So, we can expect the activation energy for diffusion in real samples to be lower than the values calculated here when charged defects are present. The structure of the VS5 ↔ S4 transition state is illustrated as a representative example in the inset of Figure 2a. In the transition state, the migrating S atom (orange sphere) has moved out of its SFe3 coordination polyhedron (red tetrahedron) to nearly the center of the Fe3 triangle (shaded blue) that separates it from the vacancy (green sphere). Note that the high barrier for sulfur diffusion is not due to strain, since the triangle of Fe ions is large enough for the sulfur atom to pass through (\(d_{\text{Fe}} = 2.25–2.49 \) Å). Rather, the main cause for the high activation energy is the cleavage of the S–S bond length in the transition state increases from 2.16 to 2.58 Å. The transition state in the bulk crystal is very similar. We conclude that “inter-dimer” vacancy hops determine the rate of vacancy diffusion in the bulk and toward the surface of pyrite.

Strikingly, the energy barriers for both intra- and inter-dimer hopping gradually decrease near the Surf(0) surface because of
the greater freedom of near-surface atoms to adjust their positions and charge states to accommodate the vacancy. In particular, the energy barrier of the final step, \(V_{S,2} \rightarrow S_{-1} \) (conversely, the initial step for sulfur atoms to enter the crystal), is only 0.8 eV. It is also worthwhile to point out that the energy barriers are strongly biased in favor of vacancy diffusion toward the surface due to the monotonic decrease of \(\Delta H_f \) near the surface. For example, the inward hop \(V_{S,2} \rightarrow S_{-3} \) has an energy barrier of 1.6 eV, much higher than 0.8 eV for the outward hop. Thus, the potential energy profile effectively frustrates the formation of new VS centers in the crystal bulk and suggests that VS defects accumulate in the near-surface region of pyrite. To explore the effects of surface conditions, we also calculated the energy barriers for the final \(V_{S,2} \) hops between the first subsurface sulfur layer and outermost sulfur layer of Surf(−1) and Surf(+1) (that is, \(V_{S,3} \rightarrow S_{-2} \) for Surf(−1) and \(V_{S,1} \rightarrow S_0 \) for Surf(+1)). The resulting potential profiles plotted in Figure 2b show that the energy barrier for \(V_{S} \) diffusion to the outermost layer of Surf(+1) is only 0.25 eV. Therefore, excess sulfur atoms can easily diffuse into the subsurface to annihilate vacancies when the surface is sulfur-rich. In contrast, the corresponding barrier for Surf(−1) is \(\sim 1.1 \) eV (compared to only 0.7 eV for inward vacancy diffusion). Therefore, we can expect a high \(V_{S} \) density in the subsurface layer of Surf(−1) and diffusion of sulfur into the crystal is slowed. Our results confirm that sulfur-rich conditions on the FeS\(_2\)(100) surface should be beneficial for the removal of \(V_{S} \) defects.

To see if the same outward diffusion tendency of \(V_{S} \) is true of other surfaces, we performed calculations for three FeS\(_2\)(111) surfaces and the stoichiometric (110) and (210) surfaces. We first identified the most probable surface morphologies by calculating their surface energies at temperature \(T \) and pressure \(p \) according to the equation

\[
\gamma(T, p) = \frac{1}{2A} \left[G(T, p, N_{Fe}, N_{S}) - N_{Fe}\mu_{Fe}(T, p) - N_{S}\mu_{S}(T, p) \right]
\]

Here, \(A \) is the surface area, \(G(T, p, N_{Fe}, N_{S}) \) is the Gibb’s free energy of the slab, and \(N_{Fe} \) and \(N_{S} \) are the numbers of Fe and S atoms. We applied a constraint that requires the chemical potentials of Fe (\(\mu_{Fe} \)) and S (\(\mu_{S} \)) to obey \(\mu_{Fe} + 2 \mu_{S} = \mu_{FeS2} \), where \(\mu_{FeS2} \) is the chemical potential of one FeS\(_2\) formula unit in bulk pyrite. Under ambient conditions, \(G \) can be approximated by the total energy without contributions from configurational or vibrational entropy.

The calculated surface energies of several FeS\(_2\)(111), (110), and (210) surfaces are shown in Figure 3, along with the corresponding atomic configurations. Here, values of \(\mu_{S} \) range from the energy of a sulfur atom in H\(_2\)S (−3.77 eV) to that of a sulfur atom in S\(_2\) (−2.63 eV) to simulate sulfur-poor to sulfur-rich conditions. We see that the stoichiometric FeS\(_2\)(100) surface has the lowest surface energy in sulfur-poor conditions, whereas the sulfur-rich FeS\(_2\)(111)-3S and 4S surfaces are more stable than others in the S-rich side. This is consistent with our experimental observations and previous DFT studies.59,60

Taking the FeS\(_2\)(111)-4S surface as an example, we studied the diffusion of \(V_{S} \) near the surface, and found that the vacancy formation energies decrease from \(V_{S,0} \) to \(V_{S,-1} \) because, again, near-surface atoms can relax more easily. Since \(\Delta H_f \) is small, for example, 0.53 eV for \(V_{S,4} \) at the (111)-4S surface under the condition \(\mu_{S} = 3.77 \text{ eV} \), we expect the population of \(V_{S} \) near (111) surfaces to also be high in as-grown samples. Since the calculated energy barrier for \(V_{S,4} \rightarrow S_{-2} \) as highlighted by the pink arrow in Figure 1d and plotted in Figure 2b, is only 0.33 eV, sulfur vacancies near the (111) surface should be easily expelled under sulfur-rich conditions.

Perhaps the most important experimental quantities that can be calculated from our results are the diffusion coefficients for sulfur vacancies (\(D_{V} \)) and sulfur atoms (\(D_{S} \)) in bulk pyrite. \(D_{V} \) is proportional to the product of the average number of interdimer sulfur atoms adjacent to a vacancy and the \(S_{5r} \)-to-\(V_{S} \) hopping rate, i.e., \(D_{V} = \alpha(1 - \exp(-\Delta H/k_B T))gd^2\exp(-E_S/k_B T) \). For sulfur self-diffusion by the vacancy mechanism, \(D_{S} \) is proportional to the product of the average number of vacancies adjacent to a sulfur atom and the \(S_{5r} \)-to-\(V_{S} \) hopping rate, i.e., \(D_{S} = \alpha \exp(-\Delta H/k_B T)gd^2\exp(-E_S/k_B T) \). Here, \(\alpha \) is the number of interdimer sulfur nearest neighbors for a sulfur atom in pyrite (\(\alpha = 6 \)), \(\Delta H_f \) is the vacancy formation energy, \(g \) is a geometric factor (\(g = 1/6 \) for 3D diffusion), \(\nu \) is the attempt frequency, \(d \) is the hopping distance, \(E_S \) is the activation energy for a \(S_{5r}-V_{S} \) hop, \(k_B \) is Boltzmann’s constant, and \(T \) is the temperature. The diffusivity expression is often simplified to \(D = D_0 \exp(-E/k_B T) \), where \(D_0 = \nu gd^2 \) is the pre-exponential constant and \(E \) is the overall activation energy for diffusion, with \(E \approx E_S \) for vacancy diffusion and \(E = \Delta H_f + E_S \) for sulfur self-diffusion. Here, \(d = 3.06 \text{ Å} \) is the shortest distance between \(V_{S} \) and \(S_{5r} \) of a neighboring dimer. The attempt frequency, \(\nu \), was determined by calculating the vibrational frequency of the migrating sulfur atom using the linear response approach. We find \(\nu \approx 10^{13} \text{ s}^{-1} \) for sulfur atoms vibrating at their equilibrium sites and, accordingly, \(D_0 \approx 9 \times 10^{-7} \text{ m}^2 \text{s}^{-1} \).
outnumber vacancies and $D_\text{ff} \gg D_\text{V}$ at all experimentally relevant temperatures. In other words, vacancies move faster than sulfur atoms because each vacancy is always surrounded by ~ 6 sulfur atoms, while the probability for a sulfur atom to have an adjacent vacancy is very low. Using $E_\text{ff} = 1.95$ eV, we find $D_\text{ff} = 9 \times 10^{-40}$ m2 s$^{-1}$ at 25 °C and 5×10^{-18} m2 s$^{-1}$ at 600 °C. Vacancy diffusion is significantly faster within 1 nm of the surface (e.g., $D_\text{V} = 4 \times 10^{-32}$ m2 s$^{-1}$ at 25 °C near the (100) surface). It is of course expected that both surface and near-surface diffusion is faster than bulk diffusion.

Unlike D_ff, D_V depends critically on the value of ΔH_V. If we use the bulk value of ΔH_V in sulfur-poor conditions (2.36 eV), we have $E = \Delta H_\text{V} + E_\text{fi} = 4.31$ eV, and an extraordinarily low sulfur diffusivity, $D_\text{V} = 1 \times 10^{-39}$ m2 s$^{-1}$ at 25 °C. If we instead use the value of ΔH_V at the surface (e.g., $\Delta H_\text{V} = 0.42$ eV at Surf(0))—appropriate if vacancies form mainly at the surface during nonequilibrium crystal growth and are then buried within the growing crystal, which seems likely—then $E = 2.37$ eV and $D_\text{V} = 7 \times 10^{-42}$ m2 s$^{-1}$ at 25 °C and 2×10^{-20} m2 s$^{-1}$ at 600 °C (Figure 4). Watson et al. have reported on sulfur self-diffusion experiments using natural pyrite single crystals. Based on fitting 34S diffusion profiles of (100) crystals immersed in liquid 34S at 500–725 °C, these authors found $D_\text{V} = (2 \times 10^{-14}$ m2 s$^{-1}) \exp(-1.37$ eV/$k_B T)$, which gives $D_\text{V} = 1 \times 10^{-37}$ m2 s$^{-1}$ at 25 °C and 2×10^{-32} m2 s$^{-1}$ at 600 °C (Figure 4). Our calculated D_V values are thus in reasonable agreement with experiment only if vacancies form at the crystal surface (where ΔH_V is relatively small) and are then trapped in the bulk, or if the bulk vacancy concentration is otherwise much higher than its calculated equilibrium value (possibly because V_fi forms in association with another defect). However, the agreement between experiment and theory seen at intermediate temperatures (~ 275–625 °C) in Figure 4 is fortuitous, since the experimental values of D_V and E are both significantly smaller than predicted here. Future work is needed to evaluate whether sulfur self-diffusion in real pyrite samples readily occurs by mechanisms other than simple vacancy diffusion.

In summary, we performed systematic density functional calculations to understand the mechanism and determine the diffusion coefficient of sulfur vacancy diffusion near different pyrite surfaces. Formation energy calculations reveal that near-surface sulfur vacancies tend to move toward the surface via sequential “intra-dimer” and “inter-dimer” hopping, with the latter determining the rate of vacancy diffusion. We find an expression for the bulk vacancy diffusion coefficient, $D_\text{V} = (9 \times 10^{-7}$ m2 s$^{-1}) \exp(-1.95$ eV/$k_B T)$, giving a diffusivity of 5×10^{-18} m2 s$^{-1}$ at 600 °C. The activation energy decreases very close to the pyrite surface, resulting in faster vacancy diffusion near the surface than in the bulk (e.g., $E_\text{fi} = 1.5$ eV and $D_\text{V} = 2 \times 10^{-15}$ m2 s$^{-1}$ near the (100) surface). Using the vacancy formation enthalpy near the surface, the corresponding calculated expression for sulfur-self-diffusion in bulk pyrite is $D_\text{ff} = (9 \times 10^{-27}$ m2 s$^{-1}) \exp(-2.37$ eV/$k_B T)$, giving a diffusivity of 2×10^{-20} m2 s$^{-1}$ at 600 °C. The calculated value of D_ff is in good agreement with experiment at intermediate temperatures (~ 275–625 °C), but the experimental values of D_ff and the activation energy for diffusion are substantially smaller than predicted by our model. To eliminate sulfur vacancies in the crystal bulk, pyrite growth and annealing should be performed at elevated temperature in sulfur-rich conditions.

Acknowledgments

We thank the NSF SOLAR Program (Award CHE-1035218), the UCI School of Physical Sciences Center for Solar Energy, and the startup fund of China Thousand Young Talents Program for support of this work. Calculations were performed on parallel computers at NERSC, NSF supercomputer centers, and Tianhe-2/JK in the Beijing Computational Science Research Center.

References

(10) Geng, W. T.; Freeman, A. J.; Wu, R.; Geller, C. B.; Raynolds, J. E. Embrittlement and Strengthening Effects of Hydrogen, Boron, and
Stoichiometry and Oxygen-induced p-type Conductivity of Pyrite

