James Puthussery August 3, 2010

Synthesis of iron pyrite nanocrystals

Current synthesis of pyrite (FeS₂) nanocrystals

Pot

FeCl₂.4H₂O (100 mg, 0.5 mmol) Octadecylamine (10 g, 0.14 mol)

Octadecylamine

Inject

Phenyl ether (5mL) Sulfur (96 mg, 3 mmol)

Injection at 220 C Cooking for 3 h

Degas at 120 C for 1h

The reaction yield varies from 5 mg (8%) to 15 mg (25%).

Progress of the reaction

For larger reactions (5 times higher)

- > Reaction proceeds at a slower rate compared to small scale reactions
- Amount of the soluble product do not increase correspondingly and the yield of the reaction is as low as 4 to 8%
- For the same concentration, the total time Fe precursor spends in the reaction pot determines the quality of the resulting nanocrystals

Effect of counter ion

Iron chloride

Iron bromide

Iron Iodide

Iron bromide, 4h

Other precursors such as iron oxalate and iron acetylacetonate gave insoluble products

Fe: S ratios

<u>50 nm</u>

Temperature

Lower temperatures gave amorphous iron sulfide products

Solvents

- Other primary long chain amines gave the desired phase, but relatively lower yields
- Any noncoordinating solvents such as octadecene or squalane gave mixed phase materials
- Noncoordination injection solution don't have any influence on the reaction and the solubility of the product decreases if the injection solution exceeds 50% of total reaction

What is on the surface of the nanocrystals?

Octadecylamine

Pyrite nanocrystals

From the literature

Octadecylamine unlike othre amines exist as inner salts as proved by FT-IR studies

By FT-IR and NMR the existence of any inner salts are ruled out in the case of octadecylamine. The extra band is due to the presence of strong hydrogen bonds or amine hydrates.

Ref: J Mol Str 924–926 (2010) 106-110

$$2CH_3(CH_2)_nNH_2 + CO_2 \stackrel{\leftarrow}{\underset{\Delta}{\longrightarrow}} NH_3^+(CH_2)_nCH_3 +$$

CH₃(CH₂)_nNHCO₂⁻

Exposure of long chain fatty acids to CO_2 makes thiocarbamate and by controlled exposure with CO_2 , they could produce ZnS nanorods.

Ref: Nano Lett., 9, 2009, 2088

Octadecylammonium chloride

Presence of primary amine salt makes a difference in the nanocrystal morphology

Fel₂, with OD-NH₃⁺Cl (5%), 4h cooking

Blank, without OD-NH₃⁺Cl, 4h cooking

New ligands (xanthates and thiocarbamates) for stabilizing nanocrystals

 $H_{3}C(H_{2}C)_{16}H_{2}C-OH \xrightarrow{KOH} H_{3}C(H_{2}C)_{16}H_{2}C-OK^{+} \xrightarrow{CS_{2}} H_{3}C(H_{2}C)_{16}H_{2}CO-CS_{3}$

Stock solution

After adding pot. Octadecyl xanthate

Shorter alkyl chain xanthate do not stabilize the nanocrystal solution.

Making nanocrystal films

After annealing

570 C, 7h

Heating to 550 C

Future work

- > Optimize the annealing temperatures to get good films without cracking
- > Film treatment using various reagents to replace NCs with shorter chain ligands