Vacancy segregation on the FeS$_2$(001) surface: DFT calculations

Yanning Zhang, Jun Hu, and Ruqian Wu
Department of Physics and Astronomy
Mar. 15th, 2011
Sulfur vacancies in Pyrite

The broken Fe-S and/or S-S bonds create vacancies and defects on Pyrite surfaces.

- change electronic states
- narrow the surface band gap
- pin the Fermi level
- reduce the photovoltage of pyrite samples
Effects of vacancy on electronic properties

.reduce the sulfur deficiency.
"The purpose of sintering the NC films (in the Sulfur vapor) was to increase the average grain size (and thus the carrier diffusion length), reduce possible sulfur deficiency, remove carbon, and densify the films."

- How can the vacancy be filled?
- What’s the energy barrier?
- How to control?
- other substitutions?

......
DFT calculation details

- DFT calculations with the plane-wave-based Vienna Ab initio Simulation Package (VASP)
- Potential: PAW-GGA(PBE)
- Energy cutoff: 300 eV
- Kpoints: 2×2×1 MK
- Atomic model: a seven-layer slab with a 2x2 unit cell in the lateral plane and a vacuum of ~15 Å thick.

$$\Delta E_{\text{tot}} = E_{\text{tot(DEF.)}} - E_{\text{tot(clean)}} = +3.4 \text{ eV/surface}$$
Sulfur Segregation

ΔE is the total energy difference between the possible intermediate states and the clean S-rich FeS$_2$(001) surface.
Vacancy Segregation

\[\Delta z \]

\[\Delta E \text{ (eV/surface)} \]

\[\Delta z \text{ (10}^{-1} \text{ nm)} \]

I

II

III

IV
$d_{S-Fe} = 2.25\text{~to~}2.62 \, \text{Å}$

$d_{S-S} = 2.60\text{~to~}3.17 \, \text{Å}$

in bulk

$\begin{align*}
 d_{S-Fe} &= 2.27 \, \text{Å} \\
 d_{S-S} &= 2.16 \, \text{Å}
\end{align*}$
$d_{S-Fe} = \sim 2.55 \text{ Å}$
A proposed model for the thermal chemistry of H\textsubscript{2}S on FeS\textsubscript{2}(100).

Temperature programmed desorption (TPD)

Comparison of the adsorption energies in different adsorption states for H\textsubscript{2}S and H\textsubscript{2}O.

“Whereas the diffusion of H is well supported by our data, it cannot be determined unambiguously whether S-containing species also migrate.”

Whether H\textsubscript{2}S shows a tendency to dissociate on a defective pyrite surface was not investigated.
Conclusions

- DFT calculations were performed to study the filling process of the single vacancy at different Pyrite(001) surfaces.

- Efforts are being made to understand the effect of surface condition on the vacancy filling, so as to find out the factors that control the sulfur deficiency segregation.