Surface structure of Pyrite thin films on Si

- Raw
- Fitting
- Elemental sulfur
- Bulk sulfide (Fully coordinated, 1S, 3Fe)
- Surface sulfide (Lower coordinated 1S, 2Fe)
- Monosulfide

S\textsubscript{2p} KE=200eV

![Graph showing bond energies (eV) with peaks at various energies and labels for different sulfide structures.](image)
Advanced X-Ray Analysis Methods

XPS (Photoemission) → Binding Energy
(beamline 11.0.2, beamline 9.3.2)
XAS (Absorption) → Unoccupied Density of state (HOMO)
(beamline 11.0.1, beamline 10.3.2)
XES (Emission) → Occupied Density of state (LOMO)
(beamline 8.0.1)
All in one?

XPS, XAS, XES all in Beamline 11.0.2?
Purpose

• XPS & Electron Yield XAS
 ➢ Binding Energy, Density of State of Conduction Band
 ➢ Fermi Surface Determination: Valence Band Spectrum, or know BE element
 ➢ Band Gap
 ➢ Testing experiment on Si

• Electron Yield XES & XAS
 ➢ Density of State of Valence and Conduction Band
 ➢ Band Gap and Core Hole Effect

Chem. Mater. 2009, 21, 2568–2570
XPS

One Photon process: Photon in Electron out
XPS Cartoon Mechanism

XPS: $E_B = \hbar \nu - E_{\text{kin}} - \Phi_s$ For example, E_B for $S2p_{3/2}$

- **Free electron level**
- **Vacuum level**
- **Fermi level**
- **Conduction band**
- **Valence band**

Incident X-ray $\hbar \nu$
Surface Sensitivity

• Electron Inelastic Mean Free Path

\[E_{\text{kin}} = h\nu - E_B - \Phi_s \]

Photoelectron effect

Detector

Depth profile experiment and inelastic mean free path (IMFP)

Depth profile experiment

Synchrotron Light (various $h\nu$)

Detector

• Continuous
• Changeable

Photoelectrons with different kinetic energies come from different depth of the sample.
XES and XAS

Two Photons process: Photon in Photon out
XES Cartoon Mechanism

XES: (Photon in Photon out) Fluorescent photon created by electron decay from valence band to core level.
XAS Cartoon Mechanism

Free electron level

E_{kin}

Vacuum level

\(\Phi_s \)

Fermi level

\(E_B \)

Incident X-ray \(h\nu \)

Conduction band

Valence band

XAS: Electrons from core level to unoccupied conduction band, For example, \(A_1 \) for S_L edge

\(E_A = h\nu - h\nu_T \) For example
Limitation

• Traditional Measurement (Transmission)
 ➢ Signal-to-background ratios limited by thickness (~500Å)
 ➢ Radiation damage
 ➢ Reflection geometry experiment
 ➢ Surface Sensitive?!

• We can only collect electron not photon in beamline 11.0.2
Electron Yield

• Electron Yield or Secondary Electron
 ➢ Auger electron & Fluorescent Photon

- Photoelectron
- Auger electron
- Higher shell
- Incident X-ray hv
- Fluorescent Photon

\[\text{Ev} \]
Electron Yield

• Auger electron yield dominate
 - For K shell excitation of low-Z atoms
 - For L shell excitation of all Z < 90
 - C, N, O, S, Si

Electron Yield

- **Detection Mode**
 - Auger Electron Yield (AEY)
 - Partial Electron Yield (PEY)
 - Total Electron Yield (TEY)

Stöhr, Joachim, NEXAFS Spectroscopy, Springer-Verlag 1996
Reviews:
XPS & Electron Yield XAS
Band Gap Determination
Fermi Surface Determination

• Testing Experiment on Si (band gap 1.11eV)

• Binding Energy calibration
 - Au $4f_{7/2} = 84.00$ eV
 - Ag $3d_{5/2} = 368.27$ eV
 - Cu $2p_{3/2} = 932.67$ eV

• Valence Band Spectrum

Take-home messages

• Band Gap Determination by XPS+XAS
 ➢ Fermi Surface Determination by Valence Band Spectrum
 ➢ Fermi Surface Determination by Binding Energy Calibration
 ➢ Testing Experiment on Si

• Band Gap Determination by Electron Yield XES+XAS
 ➢ Density of State Information of Valence band and Conduction band
 ➢ Core Hole Effect Analysis