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We present a method, called iRRT, for processing
Diffusion Ordered Spectroscopy (DOSY) data, that can
produce results even in overlapping regions of the spec-
trum. From the results we obtain diffusion constants
for camphene, geraniol, and quinine of 12× 10−6cm2s−1,
9× 10−6cm2s−1, and 6× 10−6cm2s−1 respectively. We
compare the results from this method to those obtained
using a mono-exponential non-linear least squares fit.
Both the 2D DOSY spectrum and the 1D spectra cor-
responding to each component of the mixture obtained
from iRRT compare favorably to the spectra of the pure
substances, and offer a vast improvement over the ex-
ponential fit results. This method is presented as a
stable and reliable tool for solving the Inverse Laplace
Transform (ILT) problem present in experiments such
as DOSY.

Key Words: spectral estimation, diffusion ordered
spectroscopy, inverse Laplace transform, regularized re-
solvent transform, filter diagonalization method.

1. INTRODUCTION

NMR spectroscopic methods have benefitted greatly
from the development of multi-dimensional methods. Tra-
ditionally, these methods have focused on spin interac-
tions, but recent advances have allowed the investigation of
other properties. For example, the development of Pulsed
Field Gradients (PFG), have allowed properties such as
size and conformation to be investigated by NMR. As
the gradients reveal spatial information about the sam-
ple, the translation of molecules in the NMR tube can
be investigated[1, 2]. An example of this type of experi-

ment is Diffusion Ordered Spectroscopy (DOSY) [3, 4, 5].
This experiment allows spectra of mixtures to be resolved
into individual components, a feature that is very useful
for examining impure samples, or biological fluid samples
[6]. As the diffusion constant changes after binding, this
method can also be used to separate promising drug candi-
dates from a mixture of test compounds [7, 8]. Despite the
advantages that DOSY offers, it’s growth has been ham-
pered by difficulties associated with the experiment. Until
recently, DOSY experiments required expensive probes to
afford the highest resolution. Also, pulse sequences needed
to be developed to minimize the effects of eddy currents in-
troduced by the strong gradients [9]. Finally, the problem
of spectral analysis remains.

While both the Fourier Transform and the Inverse
Fourier Transform exist and are stable for complex data
analysis, they cannot be applied to the diffusion dimen-
sion of a DOSY experiment since the signals only decay
allong this dimension without oscillations, so the Fourier
spectral analysis does not reveal any useful information.
With the correct scaling along the diffusion dimension the
DOSY signal can be well described by an exponential de-
cay. In this case an Inverse Laplace Transform (ILT) for-
mally provides the relevant information, i.e., the positions
of the peaks in the ILT spectrum give the decay constants
(diffusion constants).

Unfortunately, the one-dimensional (1D) ILT corre-
sponds to a very ill-defined inverse problem. In practice,
it is often complicated by the fact that the data to be in-
verted is noisy and very short (decays quickly), i.e. it does
not contain much information in the first place. Under
such conditions it is not surprising that practically all ex-
isting numerical algorithms to perform the 1D ILT are very
capricious. This explains the numerous attempts to solve
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the problem [5, 10, 11, 12, 13, 14, 15]. The approach based
on a mono-exponential fit [16] is most commonly used be-
cause of its relative stability and robustness. However, it
gives poor results in the cases of mixtures, when the over-
lapping resonances lead to multiexponential decay. In the-
ory the latter cases can be handled by a multi-exponential
fitting. In practice it is very unstable and often produces
spurious solutions, which can hardly be cured by regular-
ization. There were attempts to develop techniques that
could process the whole 2D DOSY data [15], that is, to
exploit the correlations which exist in the 2D data and
as such to provide more information than that contained
in a 1D slice of a 2D array. However, to the best of our
knowledge those are not commonly used. It is probably
fair to claim that each of the existing methods have its
own advantages and short-comings, at least we are sure
in the latter. So far, a robust technique that performs
well in a wide range of circumstances has not been devel-
oped. A combination of processing techniques is therefore
necessary to ensure the ”correct” fit has been made or at
least to provide several alternatives. It was in the inter-
est of finding one that this study began. It has proven
to be a challenging problem that is not completely solved,
but we are presenting an effective method that prevails
even in the case of heavily overlapping resonances. The
present technique is based on the Regularized Resolvent
Transform (RRT) [26] which is in turn an extension of
the Filter Diagonalization Method (FDM) [17, 18, 28] that
have been used very successfully recently to process mul-
tidimensional NMR spectra [19, 20, 21, 24, 25, 27]. The
two methods are similar although FDM was originally de-
signed to solve the harmonic inversion problem, while the
RRT solves the spectral estimation problem. The main
advantage of FDM/RRT is that they are both true multi-
dimensional methods, i.e., they process the whole data at
once. They are relatively inexpensive compared to many
other methods, especially those based on nonlinear opti-
mization. In principle both approaches are valid, however,
since the ILT problem is very ill-posed, the regularization
aspect here is crucial [29, 22]. In FDM one has to reg-
ularize an ill-conditioned generalized eigenvalue problem,
while in RRT, an ill-conditione linear system. It turns out
that regularization of the former is very tricky, while reg-
ularization of linear systems is straightforward and well
understood. So, our method of choice is RRT.

2. THEORY

Formulation of the spectral invertsion problem
In a DOSY experiment the PFG gm is incremented

rather than the delay (∆′) to decrease experiment time.
The resulting signal is a 2D array c(n, m) := c(nτ, gm)
with n = 0, .., N − 1 and m = 0, ...,M − 1.

The 2D signal is assumed to be composed of a finite
number, K, of components that oscillate along the acqui-

sition time dimension (n) and decay exponentially in the
diffusion dimension (m):

c(n, m) =
K∑

k=1

dkun
kλm

k . (1)

Here dk are complex amplitudes that include the phase
information. If we use the representations uk = e−iτωk

and λk = e−αkβ2∆′
, physically, ωk will play the role of

complex frequencies with Re ωk corresponding to the reso-
nance positions and Im ωk, the resonance widths; αk then
correspond to the diffusion constants. In most cases, αk

are real and assume only a few different values (except for
poly-disperse samples). However, numerically introducing
any constraints on αk may be problematic and is not done
here. β is a fitting parameter and is described in the next
section.

The 2D parameter estimation problem (1) is appealing
but not used here explicitly. Instead the more convenient
for deriving the working expressions (albeit less appealing)
FDM assumption is made [19]:

c(n, m) = ΦTUnΛmΦ , (2)

where U and Λ are commuting K×K complex symmetric
matrices:

UΛ = ΛU ; UT = U ; ΛT = Λ;

Φ is a column K-dimensional vector. It can be shown by
resorting to the spectral representations of U and Λ that
the two assumptions (1) and (2) are equivalent [19].

Our objective is to estimate a 2D spectrum as a function
of two real parameters, the proton chemical shift ω and the
diffusion constant α, for instance using

I(ω, α) =
∑

k

dk(1− uk/u)−1(1− λk/λ)−1 (3)

with u = e−iτω and λ = eβ2∆′α, while avoiding the solu-
tion for the parameters dk, uk and λk. Note that due to
Eq. 1 the double sum

I(ω, α) =
∞∑

n=0

∞∑
m=0

c(n, m)u−nλ−m (4)

is a formal Taylor expansion of I(ω, α). The summation
over n is the usual discrete Fourier sum which is numeri-
cally well behaved. Unfortunately, the summation over m
corresponds to the divergent ILT, so this expression can-
not be used directly, even in a truncated form. However,
one can utilize the equivalence of the forms (2) and [19] to
obtain the resolvent formula [26]

I(ω, α) = ΦT(1− U/u)−1(1− Λ/λ)−1Φ (5)

Note that Eq. 3 is the most natural and simple, but
not the most useful spectral representation, as it does not
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lead to double-absorption lineshapes. A much more use-
ful representation that gives quasi-absorption lineshapes is
[26]

A(ω, α) =

∣∣∣∣∣∑
k

dk(1− uk/u)−2(1− λk/λ)−2

∣∣∣∣∣ . (6)

The only drawback of this representation is that it distorts
the peak amplitudes, i.e., scales them by a factor equal
to the inverse widths, so sharp peaks are overemphasized
relative to the broad ones. In terms of the resolvents Eq.
6 is written as

A(ω, α) =
∣∣ΦT(1− U/u)−2(1− Λ/λ)−2Φ

∣∣ (7)

Local spectral analysis using Fourier basis

Both expressions (5) and (7) are in principle well be-
haved, however, neither could be used directly for spectral
estimation as the matrices U and Λ and the vector Φ are
unknown. Fortunately, the corresponding resolvent matrix
elements can be represented in terms of the available data
by choosing a suitable basis. The simplest choice is given
by

Φn,m := UnΛmΦ (n = 0, .., Ñ − 1; m = 0, .., M̃ − 1)

where, assuming both N and M being even integers, we
have defined:

Ñ := N/2; M̃ := M/2.

Evaluated in this basis the expressions in (5) and (7) will
be given solely in terms of the available data c(n, m). How-
ever, this would require solution of a linear system with
ÑM̃ equations. A more appropriate choice is given by a
small Fourier basis

Ψj =
Ñ−1∑
n=0

M̃−1∑
m=0

(U/zj)nΛmΦ (j = 1, ...,Kwin) (8)

with a set of values on the unit circle zj = e−iτϕj . Such
a basis effectively represents only important contributions
to the resolvent (1 − U/u)−1, if zj ∼ u (or ϕj ∼ ω), and
(1−Λ/λ)−1 for real values of λ. Also note that, unlike the
conventional case of a 2D Fourier spectral analysis, where
each dimension is treated on the same footing, here the
signal does not oscillate along the diffusion dimension and
so the corersponding Fourier filter is much simpler and
is designed to represent only the zero frequency contribu-
tions. A further simplification exists if the set of values
zj ≡ e−iτϕj are chosen as Kwin consequitive roots of unity
of the Ñ -th order[23]:

zÑ
j = 1.

This corresponds to choosing an equidistant set of real
numbers ϕj = 2(j0 + j)π/Ñτ (j = 1, ...,Kwin) in some a
priori specified frequency window. The whole frequency

range of interest is then split into small overlapping win-
dows of equal size (see, e.g., ref. [33]). The spectra in each
window are computed and then summed with an appropri-
ate weighting to account for the overlap. Note that with
this construction the rank of the original signal space K
(see Eq. 1) is not a parameter of the method. It may seem
though that Kwin that defines the size of the local Fourier
basis is an adjusting parameter of the method. However,
the results are generally independent of Kwin as long as it
is sufficiently large. In our calculations we usually set it to
Kwin = 50, which is “sufficiently large” but does but make
the calculations expensive.

iRRT: Working expressions
Numerical expressions to evaluate the spectra in a win-

dow basis (8) are given by (see, e.g., ref. [28] for derivation)

I(ω, α) = CTR−1
1 U0R−1

2 C, (9)

A(ω, α) =
∣∣∣CTR−1

1 U0R−1
1 U0R−1

2 U0R−1
2 C

∣∣∣ . (10)

Here the elements of the column vector C are

[C]j =
Ñ−1∑
n=0

M̃−1∑
m=0

z−n
j c(n, m).

The Kwin ×Kwin matrix pencils are defined as

R1 = U0 −U1/u; R2 = U0 −U2/λ.

The matrix elements of Up (p = 0, 1, 2) are computed
using:

[Up]jj′ =


zj′xp(zj)− zjxp(zj′)

zj′ − zj
, if j 6= j′,

yp(zj), otherwise.
(11)

where

xp(z) =
Ñ−1∑
n=0

z−n(ap(n)− ap(n + Ñ))

yp(z) =
N−2∑
n=0

z−nap(n)(Ñ − |Ñ − n− 1|)

and the three arrays ap(n) computed by

ap(n) =
M−2∑
m=0

c(n + np,m + mp)(M̃ − |M̃ −m− 1|)

with (n0,m0) = (0, 0); (n1,m1) = (1, 0); and (n2,m2) =
(0, 1).

Even though the points c(N,m) were formally included
in the summation for x1(z), evaluation of the Up matrices
requires the knowledge of c(n, m) only for n = 0, ..., N −
1 = 2Ñ − 1 and m = 0, ...,M − 1 = 2M̃ − 1: the final
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result for U1 does not actually depend on c(N,m) as the
corresponding contributions in Eq. 11 cancel.

Note that R1 = R1(ω) is a function of the proton fre-
quency ω and R2 = R2(α), a function of the diffusion
constant α. So R1 must be inverted at each value of ω
and R2, at each value of α where the spectrum A(ω, α) is
desired. Fortunately, with the Fourier basis the matrices
are small (Kwin ≤ 100), so the multiple inversions are not
time consuming. The primary issue here is regularization
of R1 and R2.

Equations 9 and 10 are new and constitute one of the
main results of this paper. They look though very simi-
lar to those derived for the 2D Fourier spectral estimation
using the RRT [26]. A difference is that here one of the
arguments, α, formally corresponds to the imaginary fre-
quency (λ = eβ2∆′α is real and not on the unit circle).
Another difference is in the way the Fourier basis is set
up (Eq. 8). To emphasize these differences we called the
present method iRRT. Quite remarkably, the 2D spectral
estimation is done by evaluating a direct transformation of
the original data, avoiding any nonlinear least squares fit.
Of course, this does not mean that numerical evaluation of
Eqs. 9 and 10 is always straight-forward: no matter how
good the method is, the original ILT problem is ill-posed,
so one cannot avoid the problems associated with instabil-
ity of the solution. The later is associated here with the
ill-conditioned nature of the matrices to be inverted (R1

and R2). The very special choice of the Fourier basis (see
above) was made, after extensive experimentation, in or-
der to minimize the ill-conditioning. However, the matri-
ces R1 and R2 still remain ill-conditioned. After numerous
attempts, we have discovered that a two-step regulariza-
tion scheme is necessary to remove the instabilities in the
iRRT spectra.

Two-step regularization
In principle regularization of R1 and R2 could be

achieved using the Tikhonov regularization [29, 26], which
is significantly faster than, e.g., the singular value decom-
position (SVD). The problem with the former is that the
whole procedure must be repeated for each value of the
regularization parameter, which is usually unknown in ad-
vance, while the SVD needs to be applied only once, the
generation of the spectra at different values of the regu-
larization parameter requiring minimal extra work. For
the latter reason we have found it advantageous to use a
scheme based on the SVD:

R = VΣW†,

where V and W are unitary matrices, and Σ = diag(σi)
is real diagonal, σi > 0. After performing the SVD the
inverse R−1 can be readily calculated. However, since the
diagonal elements σi can be small and in principle zero,
their reciprocals will be very large leading to unphysical
results. An effective regularization replaces the true in-

verse R−1 = WΣ−1V† by a pseudo-inverse, for example,
using

R−1
q = WΣ−1

q V†, (12)

where Σq = diag
(

σ2
i +q
σi

)
and q > 0 is a regularization

parameter, which is small, but generally unknown. As
such several spectra Aq(ω, α) using different values of q
are generated and then analyzed to identify the optimal
q that removes most of the artifacts associated with the
ill-conditioned nature of the problem but retains the true
peaks. Very often there may be no “optimal” q, for in-
stance, an increas of q may remove the correct struc-
ture together with the artifacts, so a compromize must
be found. For the present problem the SVD (as well as
Tikhonov) regularization alone requires too much fiddling
with q to reach a reasonable compromize, but, even more
importantly, one has little control on how individual peaks
are being “regularized”. For instance, some peaks may
be arbitrarily narrow in the diffusion dimension (in fact,
the peak “width” in α is an ambiguous quantity) leading
to both difficult to contour and difficult to read spectra.
Much better results are obtained by implementing a two
step regularization. In the first step the SVD regulariza-
tion is used but with a smaller value of q than usual, i.e.,
applying a mild regularization that does not remove the
correct structures but may leave some artifacts. The sec-
ond step corresponds to a frequency correlated regulariza-
tion, through Lorentz-Gauss convolution:

Aqσ(ω, α) =
∫

dω′dα′Aq(ω′, α′)e
−
(

ω−ω′
2σω

)2

e
−
(

α−α′
2σα

)2

(13)

where σω and σα are adjusting parameters. This has
the effect of smoothing the spectrum and removing the re-
maining artifacts. Also, as the smoothing is applied after
the spectrum is generated, it does not decrease the numer-
ical efficiency of the method. Because we can still tolerate
some artifacts left from the SVD regularization, it is not
important that the parameter q is heavily optimized and
as such it is possible to set it to some small value and
thus almost eliminate one adjusting parameter. Since the
actual value of q must be a function of the signal norm

‖c‖ := NM
N−1∑
n=0

M−1∑
m=0

|c(n, m)|,

it is more convenient to use the scaled parameter

q̃ = q‖c‖−1 (14)

which is not sensitive to either scaling the signal or chang-
ing its size. The typical range for q̃ is then between 0.1 and
0.01. Although in general the smoothing along ω may be
needed, here it was not neccessary and so we set σω = 0.

This two-fold method of regularization may seem redun-
dant and not most efficient because of the need to gener-
ate Aq(ω, α) at sufficiently fine grid of α values in order to
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evaluate the integral over α in (13) accurately (there is no
smoothing in ω). It may be possible to incorporate both
regularization steps into a single regularization. So far we
have not found a method to successfully implement this.

3. EXPERIMENTAL SETUP

A challenging system of 20 µl geraniol, 30 mg camphene,
and 27 mg quinine in 500 µl deuteromethanol (Fig. 1) was
chosen due to the overlapping aliphatic region of these
molecules and the relatively similar diffusion constants.
This system was first used by Barjat et al. [30] in a 3D
experiment. The present method can give good results
for this system even using a 2D experiment. DOSY ex-
periments were run using a 500 MHz(1H) Bruker Avance
DRX500, at 300K. A modified DSTE[31, 32] pulse se-
quence was chosen (Fig. 2), with included homospoil gra-
dients and spin-lock pulses. The gradients were shaped
to half sine-bell, resulting in ∆′ = ∆ − ( 9

8 −
π2

12 )δ and
g = 2γGδ/π, with gyromagnetic ratio γ, physical gradi-
ent strength G, delay time ∆ = 52ms, and gradient time
δ = 2ms. 8192 points were collected in the direct dimen-
sion and 8 points in the diffusion dimension.

As mentioned previously, the sampling is crucial to the
processing. In order to satisfy the assumptions of the
method (Eq. 1), the signal must behave as sum of com-
plex or real exponentials in all dimensions. For DOSY, the
signal in the diffusion dimension decays as:

S

S0
= e−D∆′g2

, (15)

which is gaussian if g is sampled linearly. By sampling
g non-linearly one can enforce the exponential behavior
that is required. In this case g was chosen according to
g = β

√
m, where β is adjusted to give the appropriate

magnitude of the gradients. This non-uniform sampling
technique gives the required form for the resulting signal
[32]. We have also found that even with a linear gradient
sampling the data may still be usable for the present tech-
nique after a correctly sampled data set is constructed by

C H2

C H3H 3C

Camphene

H O C H3

C H3C H3

Geraniol

N

O

H 3C

N

H 2C

H

H O
Quinine

FIG. 1. Structures of camphene (136.24 Da), geraniol (154.25 Da),
and quinine (324.43 Da). The sample was prepared with 30 mg cam-
phene, 20 µl geraniol, and 27 mg quinine in 500 µl deuteromethanol.
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∆ δ ∆ δ
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FIG. 2. DSTE pulse sequence timing diagram used for the DOSY
experiments. Homospoil gradients are labeled ”HS” and the spin-
lock pulse is labeled ”SL”. All pulses have phase x except for
φ1(x,−x), φ2(y), and φ3(x,−x).
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FIG. 3. Expanded aliphatic region of 2D DOSY spectra obtained
from non-linear least squares mono-exponential fit and from iRRT. In
this region it is difficult to use the information from the exponential
fit, but the components are still resolved in the iRRT spectrum.

interpolation. As the decay is not oscillatory in the diffu-
sion dimension, this practice does not degrade the signal
appreciably.
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4. NUMERICAL RESULTS

The iRRT spectra presented here are all processed using
Eqs. 10, 12 and 13 with N = 6000, M = 8, Kwin = 30,
q̃ = 0.1, σω = 0 and σα = 1.6× 10−7.

For the comparison purposes we also process the
data by the most conventional technique based on a
mono-exponential fit, for which we used the Levenberg-
Marquardt non-linear least squares algorithm[16]. The
data is Fourier transformed in the proton dimension fol-
lowed by the exponential fit for each frequency point. The
slope of the log of the data is used as an initial guess for
the fitting parameter, and the resulting diffusion constant,
αω, and the standard deviation, σω, are used to construct
the spectrum as follows:

I(ω, α) =
I(ω, 0)√

2πσ2
ω

e
− (α−αω)2

2σ2
ω .

This method results in gaussian lineshapes, whose widths
reflect the uncertainty in the exponential fit, and is a stan-
dard processing technique for DOSY data [3, 4, 5]. Al-
though a mono-exponential fit does not yield as much in-
formation as other methods can, it breaks down in a known
way: it gives a peak at the weighted average of the diffu-
sion constants of the components contributing at a single
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FIG. 4. Comparison of mono-exponential non-linear least squares
fit with iRRT. Both methods are effective in the non-crowded region,
but in the aliphatic region the fitting algorithm breaks down, giving
very little usable information. The iRRT spectrum gives uniform
results across the entire spectral range.

frequency. Other methods may yield cross peaks which
can be mistaken for true peaks in the analysis.

In Fig. 4, we present the 2D DOSY spectra of the
mixture. In well separated regions of the spectrum the
mono-exponential fit is adequate, but in the crowded
aliphatic region (Fig. 3), the results are extremely un-
stable and it is impossible to assign peaks to a partic-
ular component. In the iRRT spectrum, however, both
the aliphatic protons and the remaining spectrum are well
resolved. It is easy from the iRRT spectrum to assign
diffusion constants to the three components: camphene
D = 12×10−6cm2s−1, geraniol D = 9×10−6cm2s−1, and
quinine D = 6× 10−6cm2s−1.

While the 2D spectrum is useful to see the spectral sep-
aration for different species and for obtaining the diffusion
coefficients, it would be better to be able to make struc-
tural assignments of the individual components. This can
be done by viewing the 1D ”slices” of the 2D spectrum.
Since there is some error in the diffusion constant of indi-
vidual peaks this slice should be obtained by integrating
over a small range in the diffusion dimension. This pro-
vides an average, and thus more stable 1D spectrum. The

1H (ppm)
0123456789

�

�

�

�

�

�

RRT of pure camphene

Slice from iRRT

Slice from mono-exponential fit

FT of pure camphene

FIG. 5. 1D reconstructions for camphene. The solvent peaks in
the pure spectrum are labeled with asterisks (*). All but one peak
is reproduced by iRRT, but the structure in the aliphatic region is
preserved much more in comparison to the exponential fit. Also note
that one of the solvent peaks is still present in the exponential fit.
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same integration range has been used to obtain the slices
from both the non-linear least squares spectrum and the
iRRT spectrum. The slices corresponding to camphene,
geraniol, and quinine are presented in Figures 5, 6, and
7 respectively. Both the slices from the mono-exponential
fit and iRRT are compared with the FT and RRT spec-
tra of the pure substance. For the 1D RRT spectrum we
purposely used the pseudo-absorption mode (that distorts
the amplitudes) to make it more consistent with the 2D
iRRT spectra. The solvent peaks, which are present in
the pure spectrum are marked with an asterisk (*). For
the camphene slice (Fig. 5), the iRRT is able to repro-
duce all but one of the resonances present in the pure
substance without introducing any incorrect peaks. The
mono-exponential fit is also able to produce most of the
resonances, but in the crowded region the structure is al-
most completely lost. Also, one of the solvent peaks is not

0123456789
1H (ppm)

�

�

�

�

�

�

RRT of pure geraniol

Slice from iRRT

Slice from mono-exponential fit

FT of pure geraniol

FIG. 6. 1D reconstructions for geraniol. The solvent peaks in the
pure spectrum are labeled with asterisks (*). Both methods effec-
tively resolve all the peaks, but the structure is much more promi-
nent in the iRRT spectrum. In addition, solvent is not removed in
the mono-exponential fit, and there are several peaks present that
are not present in the pure spectrum.

completely removed in the non-linear least squares slice. In
the case of geraniol (Fig. 6), both methods reproduce all of
the resonances in the pure spectrum. However, while the
iRRT slice contains very few incorrect peaks, the mono-
exponential fit contains numerous artifacts from other pro-
jections, and even contains solvent despite the large dif-
ference in diffusion constant between the two molecules.
Finally, in the case of quinine (Fig. 7), the limitations of
both methods are demonstrated. In the aliphatic region
the intensity for both methods is severely reduced. This is
due to the fact that the intensity is spread across two other
components. Despite this, almost all of the resonances are
reproduced by iRRT. In the uncrowded region of the spec-
trum, the iRRT reproduces the structure exactly, while
the mono-exponential fit is unable to reproduce the reso-
nances that overlap with the large solvent peak. In fact,
in this situation iRRT reveals structure that is obscured
by the solvent in the pure spectrum.

0123456789

1H (ppm)

�

�

�

�

RRT of pure quinine

Slice from iRRT

Slice from mono-exponential fit

FT of pure quinine

FIG. 7. 1D reconstructions for quinine. The solvent peaks in the
pure spectrum are labeled with asterisks (*). Both methods suffer
from reduced intensity in the aliphatic region, but the resonances are
present. In this case, iRRT is able to reveal structure that was com-
pletely obscured by solvent, something that the mono-exponential fit
fails at.
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The limitations of both methods are well illustrated in
the aliphatic region of the spectrum (Fig. 8). Neither
method is able to obtain any useful information from the
quinine slice due to the loss of intensity, so it is not exam-
ined further. In the case of geraniol, both methods pro-
duce the correct structure, but the mono-exponential fit
contains numerous peaks that are not present in the pure
spectrum. It should also be noted that both methyl peaks
around 1.7 ppm are present in the iRRT spectrum, but are
so intense that they are not seen using this scale. This is
the disadvantage of using the pseudo-absorption represen-
tation. As this seems to primarily affect the methyl reso-
nances, we still believe that this is the optimal representa-
tion. In the case of camphene, iRRT does a much better
job of reproducing the structure present in the 1D spec-
trum, but the intensity of the peak at 1.9 ppm is severely
reduced. This could be due to fast decay of the resonance
in the time domain, leading to low intensity in the pseudo-
absorption spectrum.

CONCLUSIONS

In this paper we adapted RRT for solving a 2D spectral
estimation problem corresponding to the inverse Fourier
transformation in the acquisition dimension, and the in-
verse Laplace transformation in the interferometric dimen-
sion. Due to the severely ill-conditioned nature of the
problem, a two-fold regularization scheme was required

11.21.41.61.822.2
1
H (ppm)

1
H (ppm)

11.21.41.61.822.2

FT of pure substance

Slice from mono-exponential fit

Slice from iRRT

FIG. 8. Expanded aliphatic region of 1D slices for geraniol and
camphene. For comparison, the FT spectra of the pure substances
are also shown. Both methods the iRRT and mono-exponential fit
suffer from problems in this region. Quite importantly though the
iRRT spectra do not contain peaks that are not present in the pure
substance.

to obtain good results. This involves adjusting the reg-
ularization parameter q, followed by Lorentz-Gauss con-
volution to smooth the remaining artifacts. By applying
this method to DOSY significant improvements can be ob-
tained over mono-exponential non-linear least squares fit-
ting. With relative success we were also able to reproduce
the 1D spectra of the pure substances from the 2D iRRT
spectrum of the mixture. This can be very advantageous
when trying to assign the structure of the compounds in
a mixture. Because iRRT uses information from both di-
mensions, it is able to reliably produce spectra that have
been previously unattainable without employing a 3D ex-
periment. In our forthcomming papers the present tech-
nique will be generalized to 3D DOSY experiments.
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