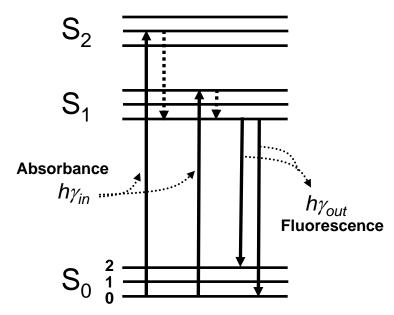
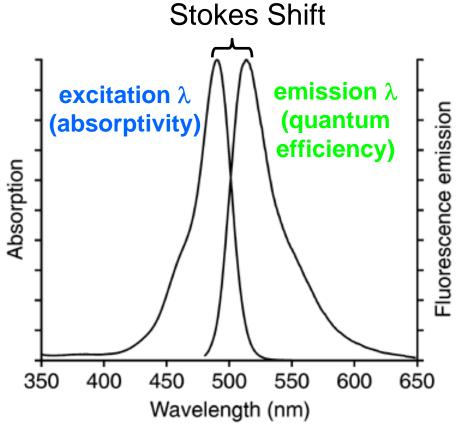
Scattering & Fluorescence


Rayleigh Scattering- Elastic Scattering "photon bouncing off a molecule/atom" Scattered light has same λ as incident light.

Raman Scattering- Inelastic scattering Incident light alters vibrational or rotational energy Happens to ~1 in 10^7 photons Scattered light has longer λ (lower energy) than the incident light.


Fluorescence- Absorbed light electronically excites a molecule Decay after a resonance lifetime Emitted light typically has a longer λ than incident light Can have a very high probability of occurring

Fluorescence

Jablonski Diagram

 S_0 , S_1 , S_2 = Singlet ground, first, & second electronic states 0,1,2 = Vibrational energy levels

Lecture 3 Fluorecence Detection and Dyes for DNA Sequencing

DNA sequencing on slab gel in 1993
Sensitivity- 10⁻¹⁷-10⁻¹⁸ moles of fluorophore/band
(~500 bands per lane- A lot!!!!!)

Can't sequence genome if need this much DNA!!!!

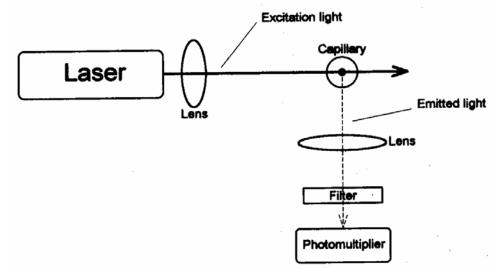
Analytical Chemistry to the rescue again!!!!

Definitions for CE

atto: 10⁻¹⁸

zepto: 10⁻²¹

yocto: 10⁻²⁴


Limits of Detection for CE

- 1. Concentration (CLOD)- molar
- 2. Mass (MLOD)- moles

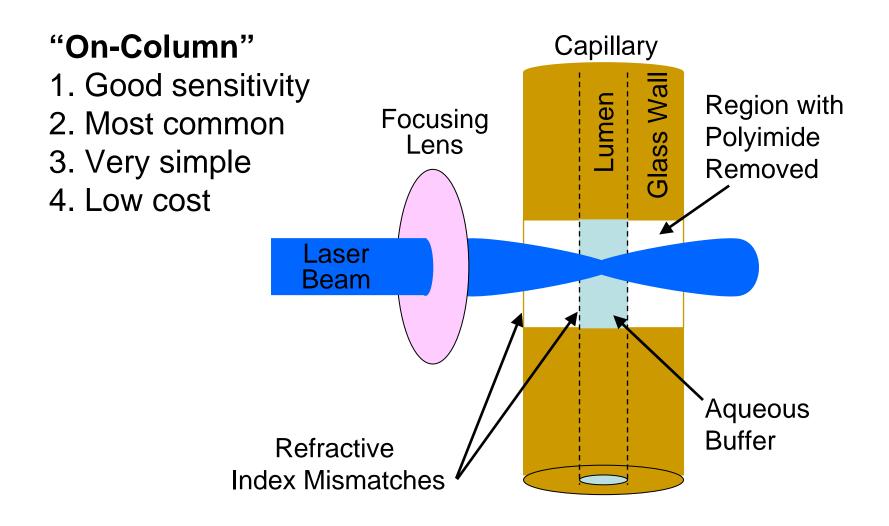
Fluorescence Detection By CE

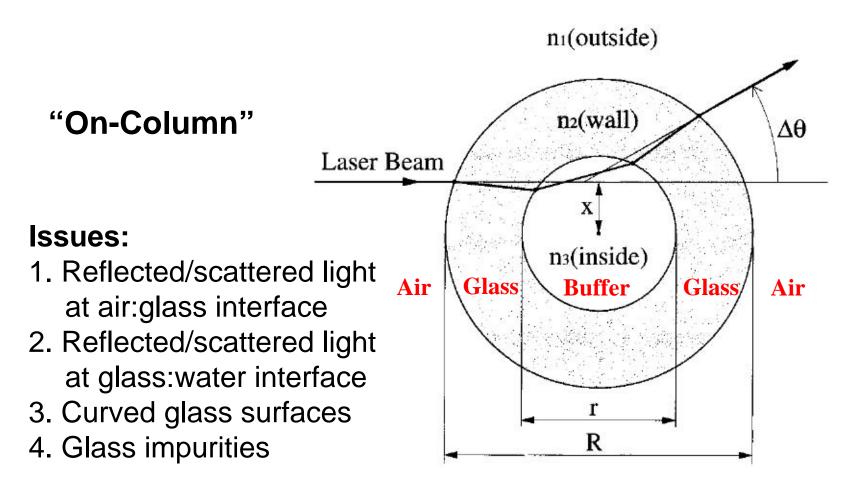
Components:

Excitation Source
Detection Cell/Window
Light Collection Optics
Detector

Excitation Source- Laser (for fluorescence measurements by CE)

Coherent, Low Divergence, Monochromatic, High photon flux High beam quality- focused to small spot size.

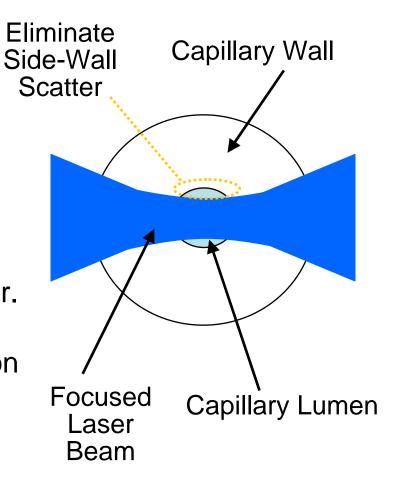

Excitation Source


Argon Ion Laser- Major lines at 488 & 514 nm

- 1. Very popular
- 2. Plethora of fluorophores exciting at 488 nm (fluorescein, its relatives, & others)
- 3. Small & relatively rugged
- 4. Low noise versions
- 5. Long lifetimes & relatively inexpensive
- 6. Used to sequence the human genome

"Going the way of the typewriter!!!"

Most popular now-Solid-State, Blue Lasers- available at 473 or 488 nm.



Anazawa et al, Anal. Chem. 1996, 68:2699.

"On-Column"

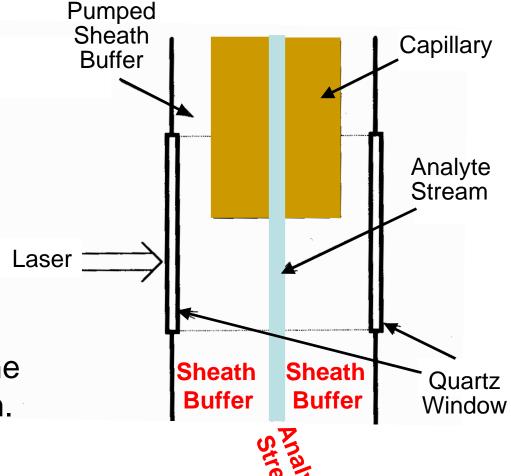
Partial solutions:

- 1. Best sensitivity with visible- λ fluorophores.
- 2. Focus laser beam to a size smaller than the lumen diameter.
- 3. Use confocal excitation/emission (see subsequent section)

"Off-Column"- Spatially & Spectrally Separates Fluorescence from High Background

- Moves index of refraction mismatch away from the analyte stream.
- 2. Flat, high quality quartz window
- 3. Ultra-high sensitivity

Issues:


Complexity

Cheng & Dovichi, 1988, Science, 242:562.

"Off-Column"

- Rate of sheath flow controls diameter of analyte stream. (no band broadening)
- 2. Laminar flow at low rates- No mixing with sheath fluid.
- 3. Laser is focused to the size of analyte stream.

Light Collection & Detector

Detector: Photomultiplier Tube (PMT)

wide dynamic range

high sensitivity

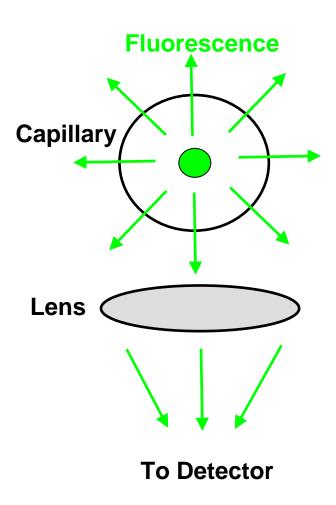
low cost

Light Collection:

- 1. Maximize collection of fluorescent light
- 2. Minimize collection of background light
 - a. Reflected/scattered light from interfaces
 - b. Rayleigh scattering- particulates
 - c. Raman scattering from water
 - d. Background fluorescence (buffer solution or glass walls)

Maximizing Collection of Fluorescent Light

Fluorescence- Isotropic *i.e.* emitted in all directions

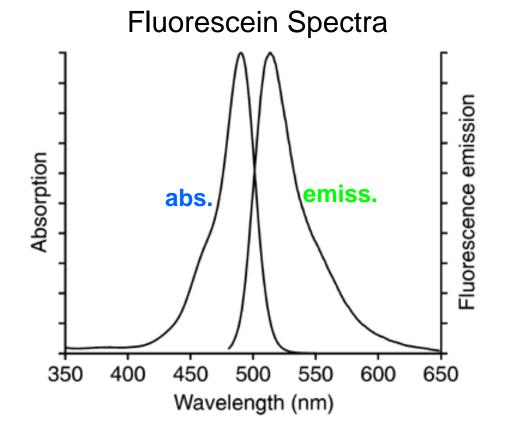

Need a Lens for Light Collection (typically microscope objective)

Fraction of light collected = Collection Efficiency = $\sin^2[0.5 \arcsin(NA/n)]$

where

NA = numerical aperture n = index of refraction of medium around lens = 1 (for air)

High NA microscope objectives give the best S/N.


Minimizing Background Light- Raman

Problematic Raman Band (using 488 nm laser line)

is at 585 nm for water.

For best S/N, must spectrally separate Raman from fluorescein emission.

Requires a bandpass filter: \sim 500 nm < λ < \sim 570 nm

Note: Filters- high transmission (>70%) in selected region but gratings (monochromators) have poor transmission (<1%).

Minimizing Background Light

Reflected Light/Rayleigh Scattered Light-

at 488 nm (same λ as excitation).

Strategies:

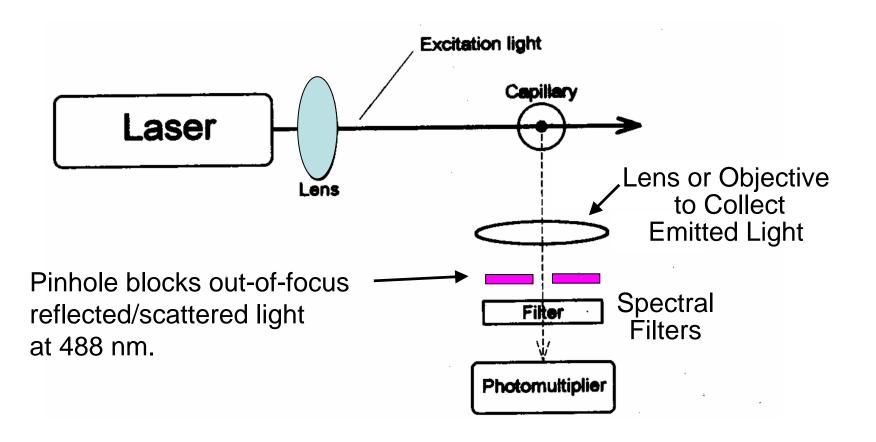
1. Spectral filtering

Bandpass filter as with Raman

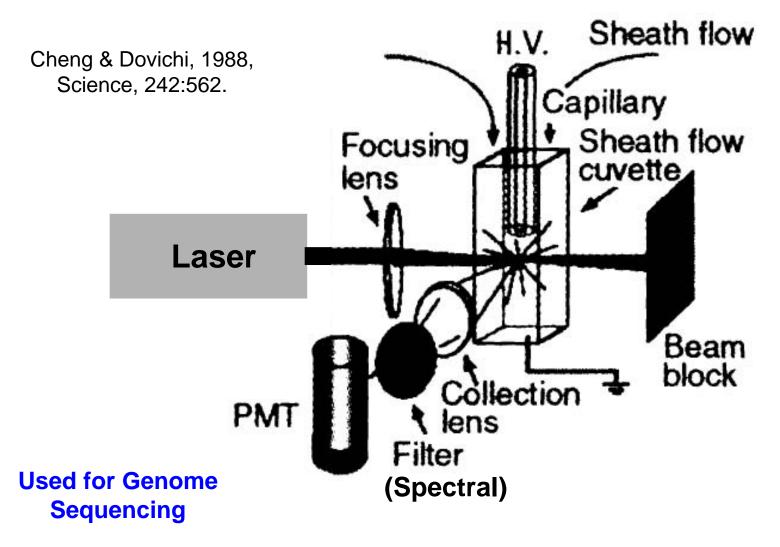
Notch/Razor filter-

Very high light rejection (OD > 6) at excitation λ

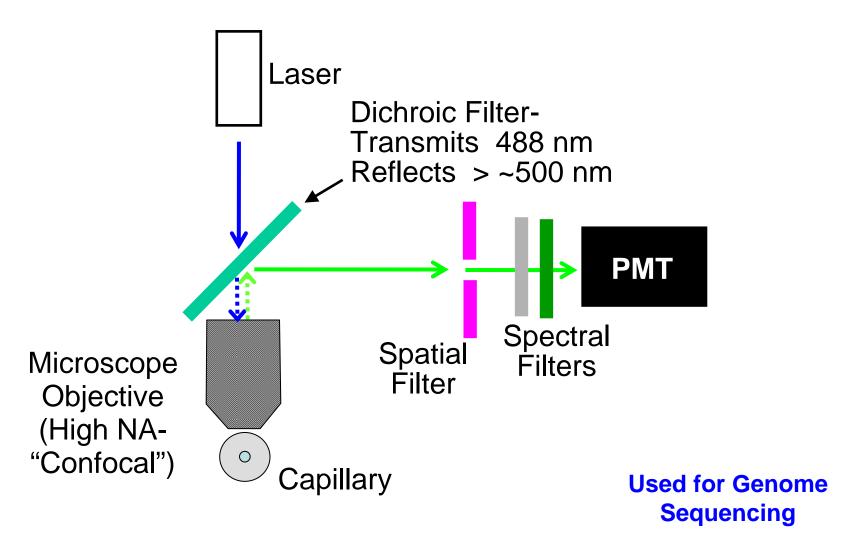
Very high transmission (>90%) at fluorophore emission


2. Spatial filtering

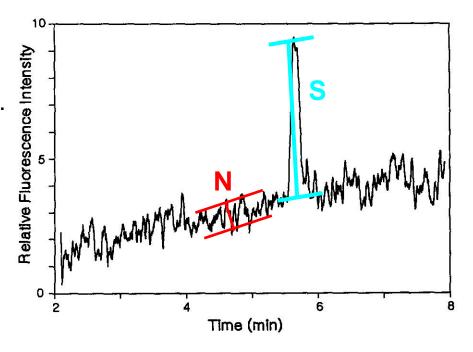
Optical Geometry-


- a. Orthogonal
- b. Epifluorescence (Confocal)

Apertures- Pinholes, Obscuration Bars


Orthogonal Optical Geometry (On-Column Detection)

Orthogonal Optical Geometry (Off-Column Detection)


Epifluorescence Optical Geometry (On-Column Detection)

Optimizing Signal to Noise

- 1. Fluorescence increases linearly with laser power (until all fluorophores are excited).
- 2. Scattered light increases linearly with laser power
- 3. Noise in background increases as (laser power)^{1/2}.

 $S/N \sim (laser power)^{1/2}$

Define detection limit as a S/N of 3:

On-column detection limits of ~10⁻²⁰ moles/band. Off-column (sheath flow) detection limits of ~10⁻²¹ moles/band. Specialized Cases: Sheath flow- 1 molecule

Fluorescent Dyes for DNA Sequencing

Need Four Dyes With These Attributes:

- 1. A common excitation λ .
- 2. High yet similar molar absorbances.
- 3. Four well-separated emission λ .
- 4. High yet similar quantum efficiencies.
- Minimal and similar μ shifts when attached to DNA strands.
- Common set of fluorescent reagents for all sequencing.

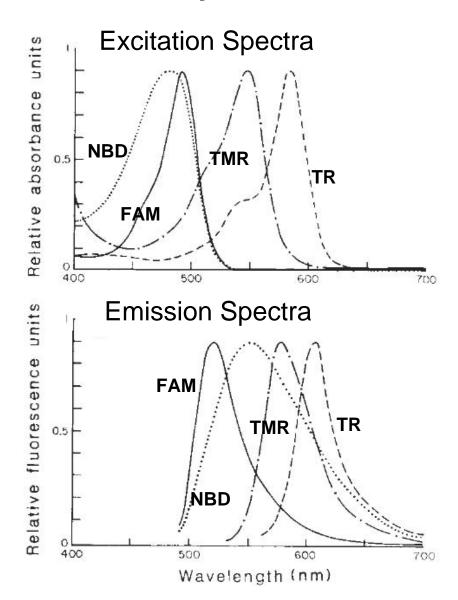
Initial Four Dyes for DNA Sequencing

Each base-specific reaction (Sanger rxn) had a different dyelabeled primer:

Tetramethylrhodamine

Texas red

	Absorption max (nm)	Emission max (nm)
Fluorescein (FAM)	493	516
4-Chloro-7-nitrobenzo-2- 1-diazole (NBD)	475	540
Tetramethyl-rhodamine (TMR)	556	582
Texas Red (TR)	599	612


Smith, L.M. et al 1986, *Nature* 321:674-9.

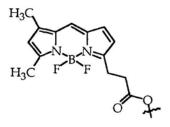
Issues With Initial Four Dyes

Issues:

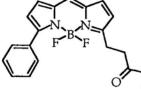
- 1. Required 2 excitation wavelengths.
- 2. Dyes were not equally bright.
- 3. Emission λ overlap.
- 4. μ shifts for the different dyes are not similar.
- 5. Need 4 different primers for each sequencing rxn.

Smith, L.M. et al 1986, Nature 321:674-9.

Improvements to Initial Four Dyes


New Fluorophores:

1. Improved fluorescein and rhodamine derivatives-Fluorescein-derived: JOE; Rhodamine-derived: TAMRA & ROX Better spectral properties.


Still require 2 excitation λ .

Nonuniform shifts in μ .

2. BODIPY dyes-Good spectral prop. Uniform shifts in μ . Still require 2 excitation λ .

BODIPY 503/512

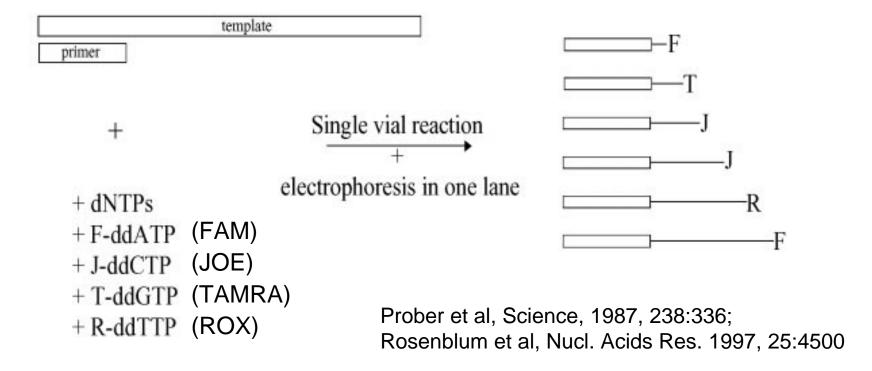
ormalized intensity (%)

BODIPY 523/547

Emission Spectra BODIPY TAMRA 523/547 564/570 BODIPY 100₁BODIPY FAM 1001 581/591 503/512 50 50 500 550 600 650 700 450 500 550 600 650 700 λ (nm) λ (nm)

> Swerdlow et al 1990, Nucl. Acids Res. 18:1415; Karger et al 1991, Nucl. Acids Res. 19:4955; Metzker et al 1996, Science 271:1420.

Fluorescent Dyes for DNA Sequencing

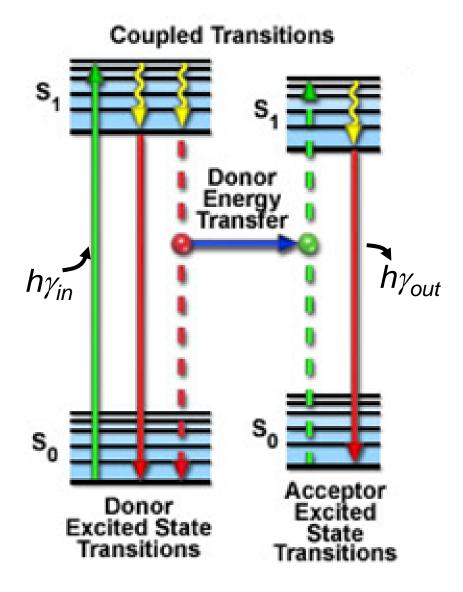

Need Four Dyes With These Attributes:

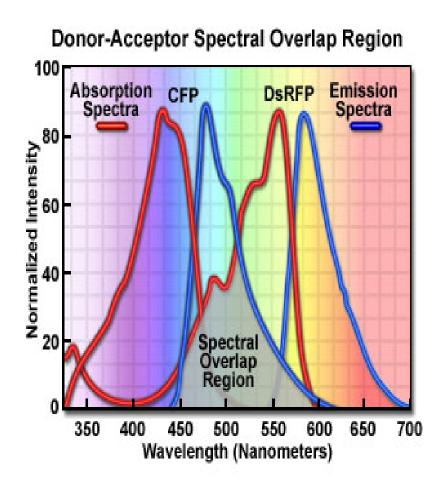
- 1. A common excitation λ .
- 2. High yet similar molar absorbances.
- 3. Four well-separated emission λ . Done
- 4. High yet similar quantum efficiencies. Done
- 5. Minimal and similar μ shifts when attached to DNA strands.
- Common set of fluorescent reagents for all sequencing.

Improvements in Dye Labeling Technology

Dye-Labeled Terminators- Fluorophore is linked to the ddNTP terminator. Use the same 4 terminators for all sequencing reactions.

Note: These also required improvements in the polymerase so it could utilize the labeled terminators.



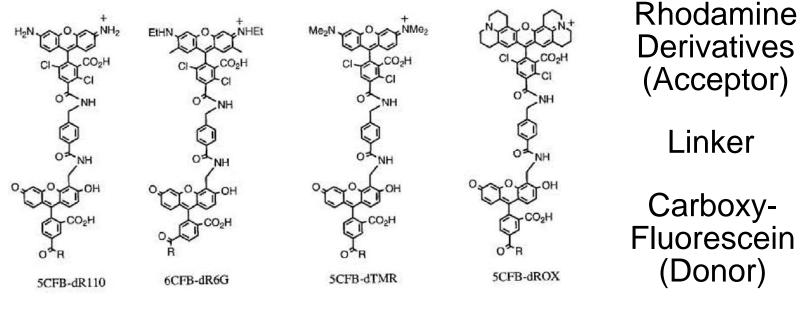

Fluorescent Dyes for DNA Sequencing

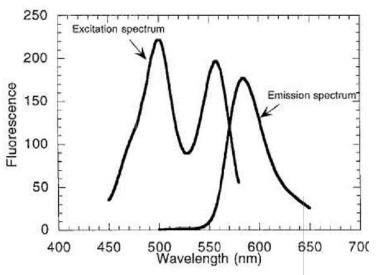
Need Four Dyes With These Attributes:

- 1. A common excitation λ .
- 2. High yet similar molar absorbances.
- 3. Four well-separated emission λ . Done
- 4. High yet similar quantum efficiencies. Done
- 5. Minimal and similar μ shifts when attached to DNA strands.
- Common set of fluorescent reagents for all sequencing.

Fluorescence Resonance Energy Transfer

Energy Transfer Dyes on Primers Permit Single Wavelength Excitation!

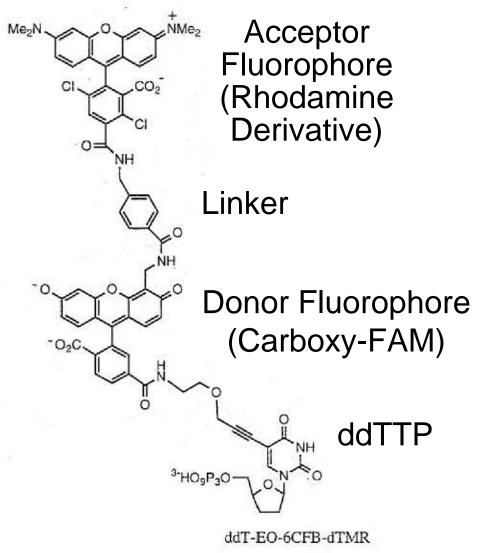

Two dyes per primer:

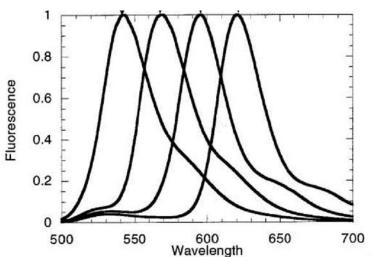

- Common donor
 FAM or Cy5
 (common exc.- 488 nm)
- 2. DNA spacer between dyes
- 3. Different acceptors FAM, JOE, TAMRA, ROX

Developed by Mathies' and Glazer's labs. Their paper using a FAM donor (PNAS 1995, 92:4347) is on the web site.

Primers with Cy5 Donor and An Acceptor

Energy Transfer Pairs for Terminators



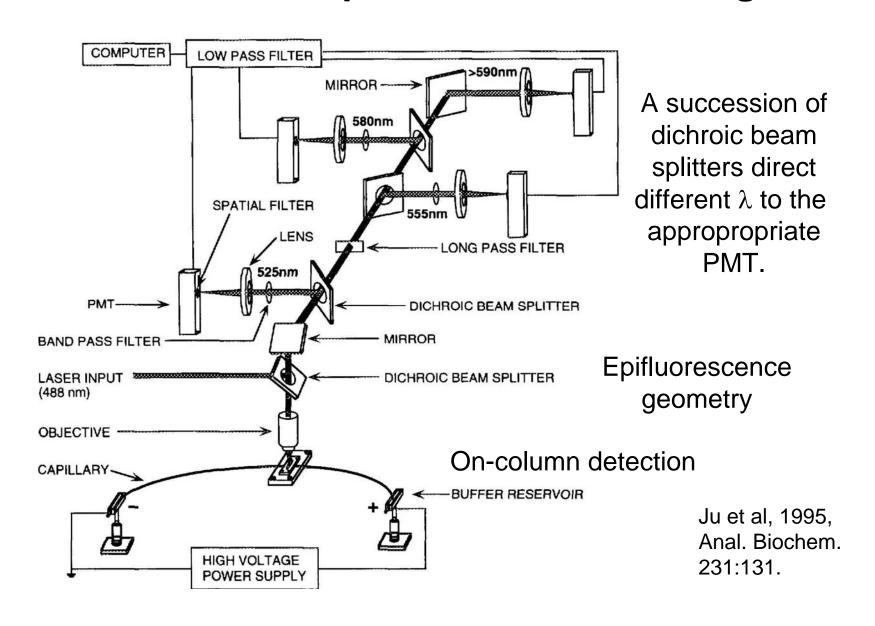

Excitation Spectra-Peaks from FAM & Rhodamine

Emission Spectra-Single Rhodamine Dye Peak

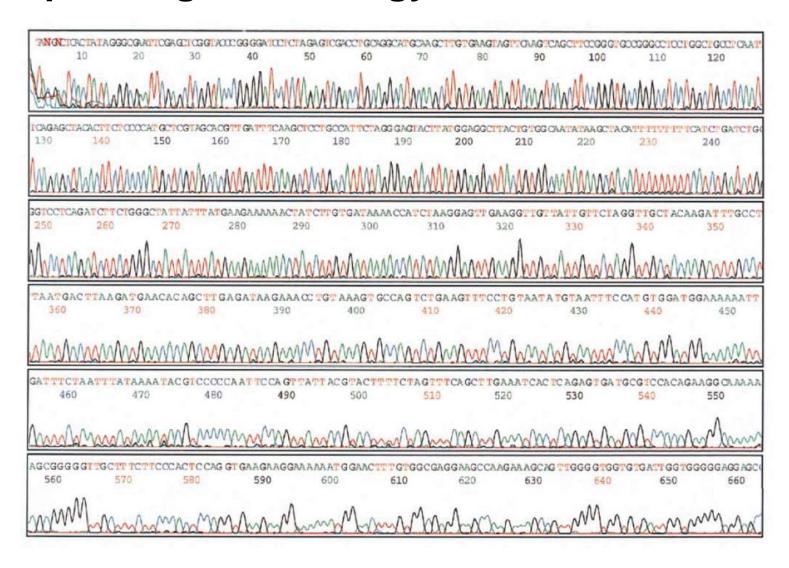
Lee et al, 1997, Nucl. Acids Res. 25:2816.

Energy Transfer Terminators- Single λ Excitation

Emission Spectra of the Four E.T. Terminators ("Big-Dye" TerminatorsTM of PE Applied Biosystems)


Rosenblum et al, 1997, Nucl. Acids Res. 25:4500.

Fluorescent Dyes for DNA Sequencing


Need Four Dyes With These Attributes:

- 1. A common excitation λ .
- 2. High yet similar molar absorbances. Done
- 3. Four well-separated emission λ . Done
- 4. High yet similar quantum efficiencies. Done
- 5. Minimal and similar μ shifts when attached to DNA strands.
- Common set of fluorescent reagents for all sequencing.

Detection of Multiple Emission Wavelengths

Sequencing Run- Energy Transfer Terminators

Lee et al, 1997, Nucl. Acids Res. 25:2816.

References- Detection

- 1. Wu S, Dovichi NJ. (1989) High-sensitivity fluorescence detector for fluorescein isothiocyanate derivatives of amino acids separated by capillary zone electrophoresis. **Journal of Chromatography**, 480: 141-155.
- 2. Li L, McGowan LB. (2000) Improving signal to background ration for on-the-fly fluorescence lifetime detection in capillary electrophoresis. **Electrophoresis**, 21: 1300-1304.
- 3. Yeung ES, Wang P, Li W, Giese RW. (1992) Laser fluorescence detector for capillary electrophoresis. **Journal of Chromatography**, 608: 73-77.
- 4. Swerdlow H, Wu S, Harke H, Dovichi NJ. (1990) Capillary gel electrophoresis for DNA sequencing: Laser-induced fluorescence detection with the sheath flow cuvette. **Journal of Chromatography**, 516: 61-67.
- 4. Roach MC, Gozel P, Zare RN. (1988) Determination of methotrexate and its major metabolite, 7-hydroxymethotrexate, using capillary zone electrophoresis and laser-induced fluorescence detection. **Journal of Chromatography**, 426:129-140.
- 5. Lee TT, Yeung ES. (1992) High-sensitivity laser-induced fluorescence detection of native proteins in capillary electrophoresis. **Journal of Chromatography**, 595: 319-325.
- 6. Chen DY, Swerdlow HP, Harke HR, Zhang JZ, Dovichi NJ. (1991) Low-cost, high-sensitivity laser-induced fluorescence detection for DNA sequencing by capillary gel electrophoresis. **Journal of Chromatography**, 559: 237-246.
- 7. Clark SM, Mathies RA. (1993) High-speed parallel separation of DNA restriction fragments using capillary array electrophoresis. **Analytical Biochemistry**, 215: 163-170.
- 8. Drossman H, Luckey JA, Kostichka AJ, D'Cunha J, Smith LM. (1990) High-speed separations of DNA sequencing reactions by capillary electrophoresis. **Analytical Chemistry**, 62: 900-903.
- 9. Cheng YF, Dovichi NJ. (1988) Subattomole amino acid analysis by capillary zone electrophoresis and laser-induced fluorescence. **Science**, 242: 562-564.
- 10. Lee TT, Yeung ES. (1996) Capillary electrophoresis detectors: Lasers. **Methods in Enzymology**, 270: 419-449.
- 11. Swinney K, Bornhop DJ. (2000) Detection in capillary electrophoresis. **Electrophoresis**, 21: 1239-1250.
- 12. Johnson, M.E., Landers, J.P. (2004) Fundamentals and practice for ultrasensitive laser-induced fluorescence detection in microanalytical systems. **Electrophoresis** 25: 35133527.

References- Fluorescent Dyes

- 1. Zakeri H, Amparo G, Chen SM, Spurgeon S, Kwok PY. (1998) Peak height pattern in dichlororhodamine and energy transfer dye terminator sequencing. **Biotechniques**, 25: 406-414.
- 2. Franca LTC, Carrilho E, Kist TBL. (2002) A review of DNA sequencing techniques. **Quarterly Reviews of Biophysics**, 35: 169-200.
- 3. Hung SC, Ju J, Mathies RA, Glazer AN. (1996) Cyanine dyes with high absorption cross section as donor chromophores in energy transfer primers. **Analytical Biochemistry**, 243: 15-27.
- 4. Hung SC, Ju J, Mathies RA, Glazer AN. (1996) Energy transfer primers with 5- or 6-carboxyrhodamine-6G as acceptor chromophores. **Analytical Biochemistry**, 238: 165-170.
- 5. Ju J, Kheterpal I, Scherer JR, Ruan C, Fuller CW, Glazer AN, Mathies RA. (1995) Design and synthesis of fluorescence energy transfer dye-labeled primers and their application for DNA sequencing and analysis. **Analytical Biochemistry**, 231: 131-140.
- 6. Ju J, Glazer AN, Mathies RA. (1996) Energy transfer primers: A new fluorescence labeling paradigm for DNA sequencing and analysis. **Nature Medicine**, 2: 246-249.
- 7. Ju J, Ruan C, Fuller CW, Glazer AN, Mathies RA. (1995) Fluorescence energy transfer dye-labeled primers for DNA sequencing and analysis. **Proceedings of the National Academy of Science, USA**, 92: 4347-4351.
- 8. Kricka LJ. (2002) Stains, labels and detection strategies for nucleic acids assays. **Annals of Clinical Biochemistry**, 39: 114-129.
- 9. Lee LG, Spurgeon SL, Heiner CR, Benson SC, Rosenblum BB, Menchen SM, Graham RJ, Constantinescu A, Upadhya KG, Cassel JM. (1997) New energy transfer dyes for DNA sequencing. **Nucleic Acids Research**, 25: 2816-2822.
- 10. Metzker ML, Lu J, Gibbs RA. (1996) Electrophoretically uniform fluorescent dyes for automated DNA sequencing. **Science**, 271: 1420-1422.
- 11. Rosenblum BB, Lee LG, Spurgeon SL, Khan SH, Menchen SM, Heiner CR, Chen SM. (1997) New dye-labeled terminators for improved DNA sequencing patterns. **Nucleic Acids Research**, 25: 4500-4504.