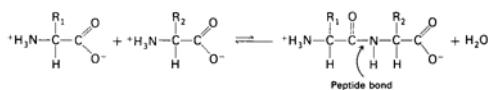

Lecture 1
Introduction- Protein Sequencing
Production of Ions for Mass Spectrometry

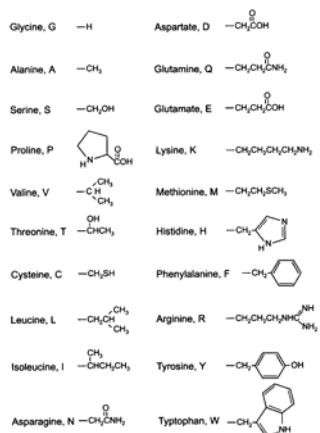
Nancy Allbritton, M.D., Ph.D.
 Department of Physiology & Biophysics
 824-9137 (office)
 nallbri@uci.edu


Office- Rm D349
 Medical Science D Bldg.

Introduction to Proteins

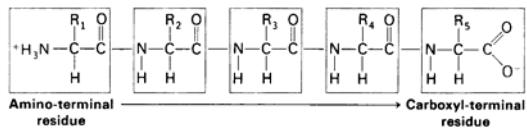
Amino Acid- structural unit of a protein

Amino acids- linked by peptide (amide) bond



Amino Acids

Proteins- 20 amino acids
 (Recall DNA- 4 bases)

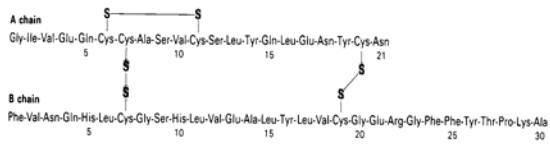

R groups-

Varying size, shape,
 charge,
 H-bonding capacity,
 & chemical reactivity

Introduction to Proteins

Polypeptide Chain (Protein) - Many amino acids linked by peptide bonds

By convention: Residue 1 starts at amino terminus.


Polypeptides- a. Main chain i.e. regularly repeating portion
b. Side chains- variable portion

Introduction to Proteins

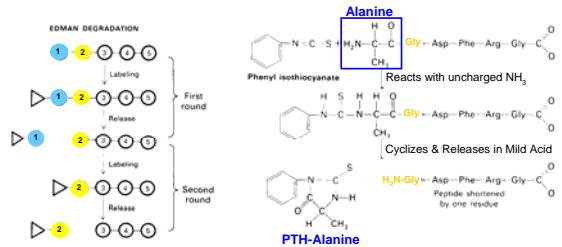
25,000 human genes \rightarrow $\geq 2 \times 10^6$ proteins

Natural Proteins - Typically 50-2000 amino acids
i.e. 550-220,000 molecular weight

Over 200 different types of post-translational modifications.
Ex: proteolysis, phosphorylation, acetylation, glycosylation

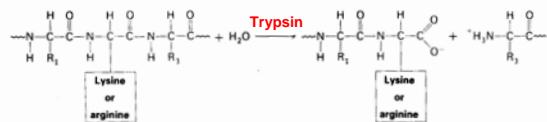
Ex: Insulin

Table 7.1 Post-translational modifications and corresponding mass variations


Post-translational modification	Mass difference (Da)
Methylation	14.03
Propylation	42.08
Sulfation	80.06
Phosphorylation	79.98
Glycosylation by:	
DHexoses (Fuc)	146.14
Hexosamines (GlcN, GaIN)	161.16
Hexoses (Glc, Gal, Man)	162.14
Acetylated Hexoses (GlcNAc, GalNAc)	203.19
Proteas (Xy, Ara)	112.12
Sialic acid (Neu5Ac)	291.26
Reduction of a disulfide bridge	2.02
Carbamidomethylation	57.03
Carboxymethylation	58.04
Cyldylation	119.14
Endohydration	122.12
Acetylation	42.04
Formylation	28.01
Biotinylation	226.29
Farnesylation	204.36
Mitoylation	210.30
Pyridoxal phosphate Schiff condensation	221.14
Stearylation	266.47
Palmitoylation	238.41
Lipoylation	188.30
C-terminalization of Asp or Glu	0.01
Desamination of Asn or Gln	0.98
Hydroxylation	16.00
Methionine oxidation	16.00
Proteolysis of a peptide bond	18.02
Desamination from Gln to pyroglutamic	-17.03

Protein Complexity Is Very Large

Over 200 different types
of post-translational
modifications.

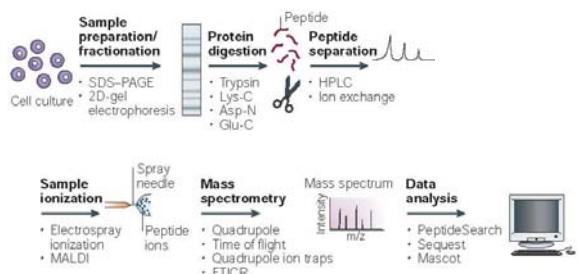

The Problem of Protein Sequencing.

Edman Degradation: Step-wise cleavage of an amino acid from the amino terminus of a peptide.

Edman Degradation

1. Must be short peptide (≤ 50 a.a.)
amino acid release- 98% efficiency
proteins- must fragment (CNBr or trypsin)

2. Frequently fails due to a blocked amino terminus
3. Intolerant of impurities
4. Tedious & time consuming (hours-days)
1 amino acid cycle- 2 hours


Solution: Mass Spectrometry

1. Impurities are tolerated.
2. Fast (sec - min).
3. Amino terminus can be blocked.
4. Always get some information.

Steps in Mass Spectrometry

1. Production of Ions
2. Ion Separation
3. Ion Detection
4. Data Acquisition & Reduction

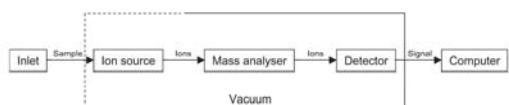
Protein Sequencing By MS

Steen & Mann Nat, Rev, Molec. Cell Bio. 2004, 5:699-711.

Units and Numbers

m/z = mass/# of e charges on the ion
 m = Daltons (Da) or atomic mass units (U)
 m/z units = Thompson (Th)

Ex: methanol (CH_3Cl)


$m_{\text{H}} = 1$; $m_{\text{Cl}} = 35$ (76%); $m_{\text{CH}_3} = 37$ (24%)
 $m_{\text{C}} = 12$ (99%) & $m_{\text{C}} = 13$ (1%)

Atomic Weight = average mass using isotope prevalence
50.5 Da

MS gives peaks for monoisotopic masses i.e.
Two major peaks- 50 & 52 Da
Very minor peaks- 51 & 53 Da

Elements of a Mass Spectrometer

1. Device to insert sample into a mass spec. sample probe, chromatograph, capillary
2. Source to produce ions from the sample.
3. Analyzer (≥ 1) to separate ions by m/z .
4. Detector to count ions.
5. Computer to control instrument and collect & analyze data.

Mean Free Path of an Ion

$$L = \text{mean free path traveled by a molecule before colliding with another}$$

$$L = kT/[\rho\sigma(2)^{1/2}] \quad ; \quad k = \text{Boltzman Constant}$$

$$T = \text{temperature}$$

$$\rho = \text{pressure}$$

$$\sigma = \text{collision X-section} = \pi d^2$$

$$d = \text{sum of radii of colliding ions}$$

$$L \text{ (cm)} = 4.95/p \quad \text{for p in milliTorr}$$

For MS analyzers, $L \geq 1$ meter then $p \leq 10^{-5}$ Torr
In practice- $p \leq 10^{-5}$ Torr
Need very efficient vacuum pumps for MS!

Ionization Methods

Characteristics:

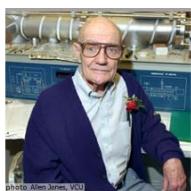
1. Energy Imparted:

Soft Ionization (less fragmentation)-

MALDI- matrix-assisted laser desorption/ionization

ESI- electrospray ionization

Hard- EI (electron Impact Ionization),
FAB (fast atom bombardment),
SIMS (secondary ion mass spectrometry)


3. Sample State:

Sample State:
Gas, Fe, Cl

Gas- EI, CI
Liquid- nebulization to introduce droplets, ESI, thermospray
Solid- uses an absorbing matrix &

irradiate with particles or photons
MALDI, FAB, field & plasma desorption

Ionization Methods: ESI & Laser Desorption 2002 Nobel Prize in Chemistry

John B. Fenn is the chemist who invented the electrospray method. Today it is used in laboratories all over the world.

Koichi Tanaka's idea was to use the energy from laser light, ingeniously transferred to the proteins, to get them to let go of one another and hover freely.

<http://nobelprize.org/chemistry/laureates/2002/illpres/mass.html>

Electrospray Ionization

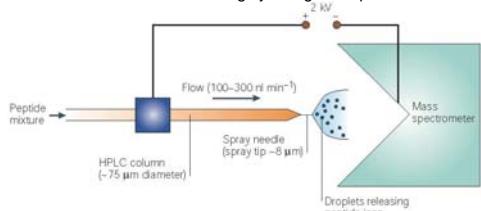
Recall: Mean Free Path = L (cm) = $4.95/p$ for p in milliTorr

Problem #1:

Most ionizers Need at $P = \sim 0.5$ Torr so that $L = \sim 0.1$ mm
Recall the analyzer is at $< 10^{-5}$ Torr

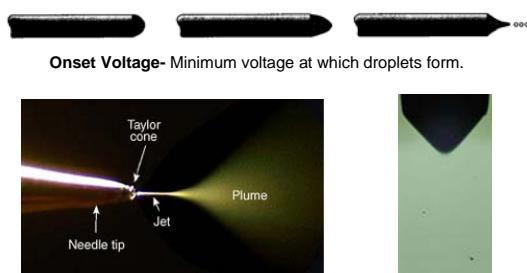
Solution #1: Increase collisions \longrightarrow Better ionization
Higher pressures \longrightarrow Increase collisions

ESI- Ionization at atmospheric pressure (760 Torr)
(10^3 - 10^4 more efficient ionization)


Enabled by:

- 1. focusing lenses with small openings
- 2. focusing multipole lenses
- 3. very high capacity pumps

Electrospray Ionization


1. Capillary with a small orifice or tip.
2. Slowly, flowing liquid at atmospheric pressure.
3. High E field ($\sim 10^6$ V/m) across the tip.

Charge accumulation at liquid surface at capillary tip.
Leads to formation of highly charged droplet.

Steen & Mann Nat Rev Molec Cell Bio 2004 5:699-711

Taylor Cone & Droplet Formation

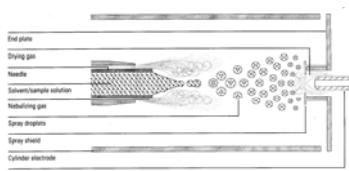
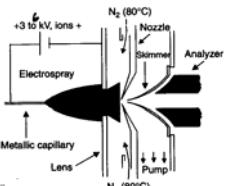
<http://www.newobjective.com/electrospray/>

Supplemental Info for
Marginean et al,
Anal. Chem. 2004,
v76, p. 4202-7

Taylor Cone & Droplet Formation

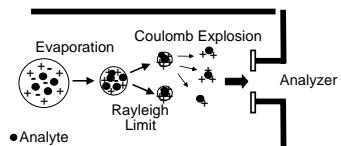
- 900 V - no spray
- 1000 V - Taylor-cone/droplet oscillation, more "drops" than spray
- 1100 V - cone/droplet oscillation, approx 50% spray
- 1200 V - cone/droplet oscillation, on the verge of a stable Taylor cone
- 1300 V - stable cone-jet
- 1400 V - cone-jet on the verge of "jumping", slight instability
- 1550 V - multiple cone-jets

<http://www.newobjective.com/electrospray/>



Electrospray Ionization

Problem #2:

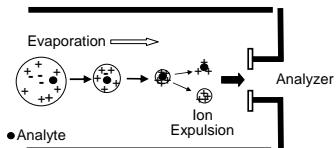
Problem #2:
Sample cooling due to adiabatic expansion
can yield ion clusters of sample.


Solution #2: Evaporate residual solvent

Employ: 1. Hi temp. transfer tube or,
2. Heated N₂ counter flow or
3. Heated gas curtain

http://www.colorado.edu/chemistry/chem5181/MS3_Ionization_II.pdf

Mechanism of Ionization

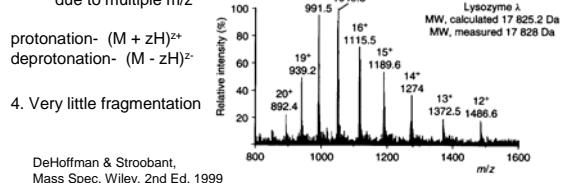


Charged Residue Model

Charged Residue Model

1. Solvent evaporates shrinking droplets
2. Coulombic forces exceed cohesive forces
3. Droplet break up
Rayleigh Eqn: $q^2 = 8\pi^2\epsilon_0 y d^3$
 $q = \text{charge}; \quad \epsilon_0 = \text{environment permittivity}$
 $\gamma = \text{surface tension}; \quad d = \text{droplet diameter}$
4. Repeats eventually leading to single ions

Mechanism of Ionization



Ion Evaporation Model

1. Solvent evaporates shrinking droplets
2. Coulombic forces exceed surface tension
3. Sufficiently large E field at droplet surface results in release of single ions.

Analyte Charge

1. Ion formation due to:
 - a. charge on droplets
 - b. electrochemical processes
 - c. adduct formation (Na^+ , NH_4^+)
 - d. gas-phase reactions
2. Produce multiply charged ions from large molecules
Proteins- ~1 charge/1 kD on average
3. Multiple mass measurements due to multiple m/z

Charge Distribution

For a peak located at m_1 , i.e. peak 1:

$$z_1 m_1 = M + z_1 m_p \quad \text{for } M = \text{mass of a molecular ion}$$

$$m_1 = \text{measured mass-to-charge}$$

$$z_1 = \# \text{ of added protons on } m_1 \text{ peak}$$

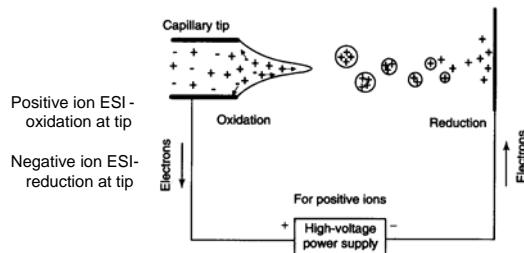
$$m_p = \text{mass of proton}$$

Consider a peak separated from peak 1 by $j-1$ peaks:

$$(z_1-j) m_2 = M + (z_1-j) m_p \quad \text{for } m_2 = \text{measured mass-to-charge}$$

$$(z_1-j) = \# \text{ of protons on the peak at } m_2$$

Then for peak 1:


$$z_1 = j (m_2 - m_p) / (m_2 - m_1) \quad \& \quad M = z_1 (m_1 - m_p)$$

Multiply charged species permit calculation of z & M in ESI!

Electrochemistry in ESI

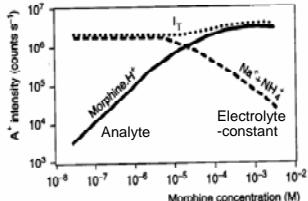
Recall: Ion charge is due to electrochemical processes at probe the tip

Total # of ions/time into the spectrometer is limited by the current at the probe tip.

Electrochemistry in ESI

I_M = Limiting Ion Current (total current is limited by oxidation)
(typically $\sim 1 \mu\text{A}$)

Consider 2 analytes, A and B:

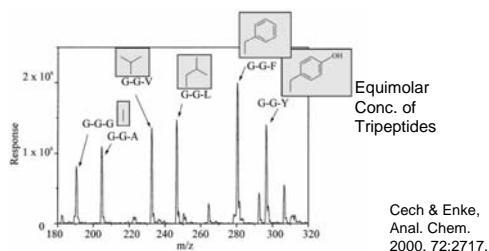

$$\begin{aligned} I_A &= k_A [A] & \text{current due to A} & \quad k_A = \text{rate constant for A} \\ I_B &= k_B [B] & \text{current due to B} & \quad k_B = \text{rate constant for B} \\ I_T &= I_A + I_B & \text{total current} & \end{aligned}$$

$$\begin{aligned} \text{At } I_T = I_M \\ I_A &= I_M k_A [A] / (k_A [A] + k_B [B]) \\ I_B &= I_M k_B [B] / (k_A [A] + k_B [B]) \end{aligned}$$

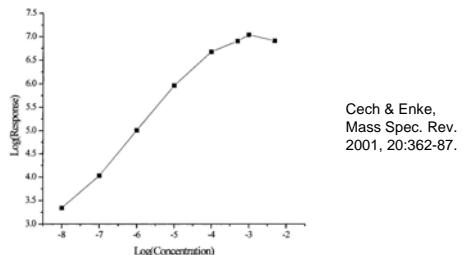
Consider $k_B [B] \gg k_A [A]$

Then-

$$\begin{aligned} I_A &\sim I_M k_A [A] / k_B [B] \\ I_B &\sim I_M \end{aligned}$$


Kebarle & Tang Anal Chem., 1993, 65, 972A

Surface Activity in ESI


Equilibrium Partitioning Model: Molecules that prefer the surface of the droplets have a better ESI response.

Partitioning Coefficient (k) = $[\text{Analyte}]_{\text{Surface}} / [\text{Analyte}]_{\text{Interior}}$

k depends on polarity, charge density, basicity.

Analyte Concentration for ESI

Cech & Enke,
Mass Spec. Rev.
2001, 20:362-87.

Typically: 10^{-8} M < [Analyte] < 10^{-5} M

Microspray and Nanospray

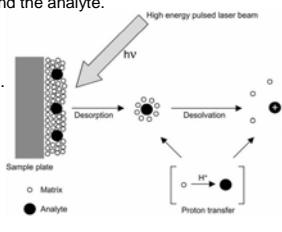
Table 3.2. Experimental conditions that distinguish electrospray, microspray, and nanospray ionization

	Electrospray ¹	Microspray ¹	Nanospray ²
Typical flow rate	2 μ L/min	0.2 μ L/min	0.02 μ L/min
Needle size (i.d.)	75 μ m	75 μ m	5 μ m
Approximate limits of detection	10 femtomole	1 femtomole	50 attomole
Sheath liquid flow required	Yes	No	No

ESI

Points:

1. Simple
2. Good for large, nonvolatile biomolecules (up to 50 kD)
 - a. $10 \text{ nM} < \text{Analyte} < 10 \mu\text{M}$
 - b. Liquid solutions
 - c. Must desalt sample
3. Easily coupled to HPLC, μ -HPLC, and CE
 - a. Flow rates of pL/min - nL/min
 - b. Also coupled to microfluidic chips
4. Little fragmentation
 - a. Easy to determine M.W.

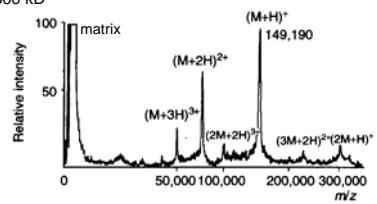

MALDI- Karas & Hillenkamp

1. Sample + Matrix
Matrix- small organic molecule absorbing at laser λ .

2. Dried- Matrix crystals surround the analyte.

3. Ablate with pulsed laser

- Rapid matrix heating with localized sublimation.
- Gas phase matrix brings analyte along.
- Very little energy transferred to analyte.
- Ionization occurs by gas-phase proton transfer by photoionized matrix.



Lane,
Cell Molec. Life Sci.
2005, 62:848-869.

Role of the Matrix

- Minimizes sample clustering
matrix molecules >> analyte molecules
- Absorbs laser energy minimizing sample damage
Mainly the monocharged species i.e. $(M+H)^+$, $(M+Na)^+$, etc
- Increases efficiency of energy transfer
Enhances sensitivity- picomoles of peptides & proteins up to 300 kD
- Improves analyte independence

MALDI MS of antibody

Hillenkamp & Karas Meth.
Enzym. 1990, 193: 280-295.

Fragmentation in MALDI

Threshold Irradiance- Minimum laser power resulting in matrix desorption.
At > threshold- increased fragmentation, decreased resolution

Lasers- UV (N_2 , 337 nm; Nd:YAG, 260 or 355 nm)
IR (Er:YAG, 2.94 μm ; CO_2 , 10.6 μm)

Fragmentation:

- Prompt- On sample surface during desorption
- Fast- At source but after desorption & before acceleration
- Post Source Decay- Occurs after onset of acceleration

Seen in MALDI Spectra
Peak broadening with decreased resolution & sensitivity.

MALDI Tolerates Impurities

Table 3.3. Tolerance limits of matrix-assisted laser desorption/ionization for various reagents used in protein and peptide isolation protocols.

Reagent	Approximate maximum tolerable concentration
Urea	0.5 M
Guanidine	0.5 M
Sodium dodecyl sulfate (SDS)	0.01 %
Detergents other than SDS	0.1 %
Dithiothreitol	0.5 M
Glycerol	1 %
Alkali metal cations such as Na^{2+}	0.5 M
Tris	50 mM
Phosphate	50 mM

MALDI Summary

Points:

1. Best mass accuracy- 0.01% (1 Da in 10 kDa)
2. Very fast and inexpensive (MALDI-TOF)
3. Can do large molecules ~300,000 kDa
4. Little fragmentation
Good for determining molecular weights
5. Very sensitive
6. Nontrivial to couple to separation techniques
7. Frequently used with TOF analyzer
for "Peptide Mass Fingerprinting"

References

1. Caprioli, R, Sutter, M, Stoeckli, M. Online Mass Spectrometry Tutorial <http://staging.msc.vanderbilt.edu/msrc/tutorials/ms/ms.htm>
2. Standing KG. 2003. Peptide and protein de novo sequencing by mass spectrometry. *Current Opinion in Structural Biology*. 13:595-601.
3. Lane CS. 2005. Mass spectrometry-based proteomics in the life sciences. *Cellular and Molecular Life Sciences*. 62:848-869.
4. Stutz H. 2005. Advances in the analysis of proteins and peptides by capillary electrophoresis with matrix-assisted laser desorption/ionization and electrospray-mass spectrometry detection. *Electrophoresis*. 26:1254-1290.
5. Cech NB, Enke CG. 2001. Practical implications of some recent studies in electrospray ionization fundamentals. *Mass Spectrometry Reviews*. 20:362-387.
6. Stump MJ, Fleming RC, Gong WH, Jaber AJ, Jones JJ, Surber CW, Wilkins CL. 2002. Matrix-assisted laser desorption mass spectrometry. *Applied Spectroscopy Reviews*. 37:275-303.
7. Steen H, Mann M. 2004. The ABC's (and XYZ's) of peptide sequencing. *Nature Reviews: Molecular Cell Biology*. 5:699-711.
8. Herbert CG, Johnstone RAW. *Mass Spectrometry Basics*. 2003. CRC Press, Boca Raton.
9. de Hoffman, E, Stroobant, V. *Mass Spectrometry Principles and Application*. 2001. 2nd Ed., John Wiley & Sons, New York.