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ry building blocks.

(a) and (b}, but different crystal faces are developed.

{c)

Figure 1 Relation of the external form of crystals to the form of the elementa

The building blocks are identical in
{c) Cleaving a crystal of rocksalt.

a)
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PERIODIC ARRAYS OF ATOMS

The serious study of solid state physies began with the discovery of x-ray
diffraction by crystals and the publication of a series of simple calculations of
the properties of crystals and of electrons in crystals. Why crystalline solids
rather than nonerystalline solids? The important electronic properties of solids
are best expressed in crystals. Thus the properties of the most important semi-
conductors depend on the crystalline structure of the host, essentially because
electrons have short wavelength components that respond dramatically to the
regular periodic atomic order of the specimen. Noncrystalline materials, no-
tably glasses, are important for optical propagation because light waves have a |
longer wavelength than electrons and see an average over the order, and not
the less regular local order itself.

We start the book with crystals. A crystal is formed by adding atoms in a
constant environment, usually in a solution. Possibly the first crystal you ever
saw was a natural quartz crystal grown in a slow geological process from a sili-
cate solution in hot water under pressure. The crystal form develops as identical
building blocks are added continuously. Figure 1 shows an idealized picture of
the growth process, as imagined two centuries ago. The building blocks here
are atoms or groups of atoms. The crystal thus formed is a three-dimensional
periodic array of identical building blocks, apart from any imperfections and
impurities that may accidentally be included or built into the structure.

The original experimental evidence for the periodicity of the structure
rests on the discovery by mineralogists that the index numbers that define the
orientations of the faces of a crystal are exact integers. This evidence was sup-
ported by the discovery in 1912 of x-ray diffraction by crystals, when Laue de-
veloped the theory of x-ray diffraction by a periodic array, and his coworkers
reported the first experimental observation of x-ray diffraction by crystals.
The importance of x-rays for this task is that they are waves and have a wave-
length comparable with the length of a building block of the structure. Such
analysis can also be done with neutron diffraction and with electron diffraction,
but x-rays are usually the tool of choice.

The diffraction work proved decisively that crystals are built of a periodic
array of atoms or groups of atoms. With an established atomic model of a crys-
tal, physicists could think much further, and the development of quantum the-
ory was of great importance to the birth of solid state physics. Related studies
have been extended to noncrystalline solids and to quantum fluids. The wider
field is known as condensed matter physics and is one of the largest and most
vigorous areas of physics.



Lattice Translation Vectors

An ideal crystal is constructed by the infinite repetition of identical groups
of atoms (Fig. 2). A group is called the basis. The set of mathematical points to
which the basis is attached is called the lattice. The lattice in three dimensions
may be defined by three translation vectors aj, a,, a,, such that the arrange-
ment of atoms in the crystal looks the same when viewed from the point r as
when viewed from every point r’ translated by an integral multiple of the a’s:

v’ =r+tua; tuas T usa,, (1)

Here uy, ug, u, are arbitrary integers. The set of points r’ defined by (1) for all
Uy, Ug, U5 defines the lattice.

The lattice is said to be primitive if any two points from which the atomic
arrangement looks the same always satisfy (1) with a suitable choice of the in-
tegers u;. This statement defines the primitive translation vectors a,. There
is no cell of smaller volume than a, - a, X a, that can serve as a building block
for the crystal structure. We often use the primitive translation vectors to de-
fine the crystal axes, which form three adjacent edges of the primitive paral-
lelepiped. Nonprimitive axes are often used as crystal axes when they have a
simple relation to the symmetry of the structure.

Figure 2 The crystal structure is formed by
the addition of the basis (b) to every lattice
point of the space lattice (a). By looking at
{c), one can recognize the basis and then one
can abstract the space lattice. It does not
matter where the basis is put in relation to a
Iattice point.




1 Crystal Structure

Basis and the Crystal Structure

The basis of the crystal structure can be identified once the crystal axes
have been chosen. Figure 2 shows how a crystal is made by adding a basis to
every lattice point—of course the lattice points are just mathematical con-
structions. Every basis in a given crystal is identical to every other in composi-
tion, arrangement, and orientation.

The number of atoms in the basis may be one, or it may be more than one.
The position of the center of an atom j of the basis relative to the associated
lattice point is

We may arrange the origin, which we have called the associated lattice point,
sothat 0 =x;, ¢,z = 1.

{b) ()

Figure 3a Lattice points of a space lattice in two dimensions. All pairs of vectors a,, a, are trans-
lation vectors of the lattice. But a,’’’, a,""’ are not primitive translation vectors because we cannot
form the lattice translation T from integral combinations of a,”’’ and a,""’. The other pairs shown
of a, and a, may be taken as the primitive translation vectors of the lattice. The parallelograms 1,
2, 3 are equal in area and any of them could be taken as the primitive cell. The parallelogram 4 has
twice the area of a primitive cell.

Figure 3b Primitive cell of a space lattice in three dimensions.

Figure 3¢ Suppose these points are identical atoms: Sketch in on the figure a set of lattice points,
a choice of primitive axes, 2 primitive cell, and the basis of atoms associated with a lattice point.



Figure 4 A primitive cell may also be chosen fol-
lowing this procedure: (1) draw lines to connect a
given lattice point to all nearby lattice points; (2) at
the midpoint and normal to these lines, draw new
lines or planes. The smallest volume enclosed in this
way is the Wigner-Seitz primitive cell. All space may
be filled by these cells, just as by the cells of Fig. 3.

Primitive Lattice Cell

The parallelepiped defined by primitive axes a;, a,, a5 is called a primitive
cell (Fig. 3b). A primitive cell is a type of cell or unit cell. (The adjective unit is
superfluous and not needed.) A cell will fill all space by the repetition of suit-
able crystal translation operations. A primitive cell is a minimum-volume cell.
There are many ways of choosing the primitive axes and primitive cell for a
given lattice. The number of atoms in a primitive cell or primitive basis is
always the same for a given crystal structure.

There is always one lattice point per primitive cell. If the primitive cell is a
parallelepiped with lattice points at each of the eight corners, each lattice
point is shared among eight cells, so that the total number of lattice points in
the cell is one: 8 X § = 1. The volume of a parallelepiped with axes a,, a,, a, is

Vc:|al'azxa3| ; (3)

by elementary vector analysis. The basis associated with a primitive cell is called
a primitive basis. No basis contains fewer atoms than a primitive basis contains.
Another way of choosing a primitive cell is shown in Fig. 4. This is known to
physicists as a Wigner-Seitz cell.

FUNDAMENTAL TYPES OF LATTICES

Crystal lattices can be carried or mapped into themselves by the lattice
translations T and by various other symmetry operations. A typical symmetry
operation is that of rotation about an axis that passes through a lattice point.
Lattices can be found such that one-, two-, three-, four-, and sixfold rotation
axes carry the lattice into itself, corresponding to rotations by 2, 27/2, 27/3,
27/4, and 27/6 radians and by integral multiples of these rotations. The rota-
tion axes are denoted by the symbols 1, 2, 3, 4, and 6.

We cannot find a lattice that goes into itsel{ under other rotations, such as
by 27/7 radians or 27/5 radians. A single molecule properly designed can have
any degree of rotational symmetry, but an infinite periodic lattice cannot. We
can make a crystal from molecules that individually have a fivefold rotation axis,
but we should not expect the lattice to have a fivefold rotation axis. In Fig. 5 we
show what happens if we try to construct a periodic lattice having fivefold



I Crystal Struciure

Figure 5 A fivefold axis of symmetry can-
not exist in a periodic lattice because it is
not possible to fill the area of a plane with
a connected array of pentagons. We can,
however, fill all the area of a plane with just
two distinet designs of “tiles” or elementary

polygons.

{c)

Figure 6 (a) A plane of symmetry parallel to the faces of a cube. (b) A diagonal plane of symmetry
in a cube. (¢} The three tetrad axes of a cube. (d) The four triad axes of a cube. {e} The six diad axes
of a cube.

symmetry: the pentagons do not fit together to fill all space, showing that we can-
not combine fivefold point symmetry with the required translational periodicity.
By lattice point group we mean the collection of symmetry operations
which, applied about a lattice point, carry the lattice into itself. The possible ro-
tations have been listed. We can have mirror reflections m about a plane through



a lattice point. The inversion operation is composed of a rotation of 7 followed
by reflection in a plane normal to the rotation axis; the total effect is to replace r
by —r. The symmetry axes and symmetry planes of a cube are shown in Fig. 6.

Two-Dimensional Lattice Types

The lattice in Fig. 3a was drawn for arbitrary a, and a,. A general lattice
such as this is known as an oblique lattice and is invariant only under rotation
of 7 and 27 about any lattice point. But special lattices of the oblique type can
be invariant under rotation of 2%/3, 27/4, or 2m/6, or under mirror reflection.
We must impose restrictive conditions on a, and a, if we want to construct a lat-
tice that will be invariant under one or more of these new operations. There are
four distinct types of restriction, and each leads to what we may call a special
lattice type. Thus there are five distinct lattice types in two dimensions, the
oblique lattice and the four special lattices shown in Fig. 7. Bravais lattice is
the common phrase for a distinct lattice type; we say that there are five Bravais
lattices in two dimensions.

Figure 7 Four special lattices in two dimensions.
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Three-Dimensional Lattice Types

The point symmetry groups in three dimensions require the 14 different
lattice types listed in Table 1. The general Jattice is triclinic, and there are
13 special lattices. These are grouped for convenience into systems classitied
according to seven types of cells, which are triclinic, monoclinic, orthorhom-
bic, tetragonal, cubic, trigonal, and hexagonal. The division into systems is
expressed in the table in terms of the axial relations that describe the cells.
The cells in Fig. § are conventional cells: of these only the sc is a primitive cell.
Often a nonprimitive cell has a more obvious relation with the point symmetry
operations than has a primitive cell.

There are three lattices in the cubic system: the simple cubic (sc) lattice,
the body-centered cubic (bec) lattice, and the face-centered cubic (fce) lattice.

Table 1 The 14 lattice types in three dimensions

e

Number of Restrictions on conventional

System lattices cell axes and angles
: T S e
Triclinic 1 a, #* ay ¥ as

wFELFy
Monoclinic 2 a, # ay F ay

a=vy=90"%8
Orthorhombic 4 a, # ag F dy

h o o= B —t ‘y = 900

Tetragonal 2 a4y = ay F ay
Cubic 3 ay = dg = dy

a=p=17y=90°
Trigonal 1 ) == ay = dy

o = 3= y<120° # 90°
Hexagonal 1 a; = @y F dy

a =3 =90°

y = 120°

Figure 8 The cubic space lattices. The cells shown are the conventional cells.
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primitive cell. T

hedron of edge 3

cent edges is 109°

hs}rimitive cell shown is a rhombo-

Characteristics of cubic Iattices?

Table 2

Volume, conventional cell a® a® a®
Lattice points per cell 1 2 4
Volume, primitive cell a® 0° 3ad
Lattice points per unit volume 1/a® a® 4/g®
Number of nearest neighbors 6 8 12
Nearest-neighbor distance a 3" a/2 = 0.866a al2'® = 0.707a
Number of second neighbors 12 6 6
Second neighbor distance 212 a a
Packing fraction® S 5 V3 é"ﬂ'\/é

={}.524 =0.680 =().740
ft e T

“The packing fraction is the maximum proportion of the available volume that can be filled
with hard spheres.

Figure 10 Primitive translation vectors of the body-
centered cubic lattice; these vectors connect the lattice
point at the origin to lattice points at the body centers.
The primitive cell is obtained on completing the rhom-
bohedron. In terms of the cube edge a, the primitive
translation vectors are

3 a, and the angle between adja-
28",

al=%a(i+)‘f—i); azzéa(“—i-i-y-f-i);
agﬁéa(i—j}-i-%) .

Here %, ¥, Z are the Cartesian unit vectors.

The characteristics of the three cubic lattices are summarized in Table 2. A
primitive cell of the bece Jattice is shown in Fig. 9, and the primitive translation
vectors are shown in Fig. 10. The primitive translation vectors of the fcc lattice
are shown in Fig. 11. Primitive cells by definition contain only one lattice
point, but the conventional bee cell contains two lattice points, and the fec cell
contains four lattice points.




Figure 11 The rhombohedral primitive cell of the face-centered
cubic crystal. The primitive translation vectors a;, a,, a, connect
the lattice point at the origin with lattice points at the face centers.

I Crystal Structure 11

Figure 12 Relation of the primitive cell
in the hexagonal system (heavy lines) to
a prism of hexagonal symmetry. Here

As drawn, the primitive vectors are: a; = ay 7 a;.
alzéa(i-i-j‘/) ; az=%a(§+%) ; ag=aalz+x) .

The angles between the axes are 60°.

The position of a point in a cell is specified by (2) in terms of the atomic
coordinates x, y, z. Here each coordinate is a fraction of the axial length a,, a,,
ay in the direction of the coordinate axis, with the origin taken at one corner of

the cell. Thus the coordinates of the body center of a cell are 553, and the face

centers include 330, 053; 305. In the hexagonal system the primitive cell is a
right prism based on a rhombus with an included angle of 120°. Figure 12

shows the relationship of the rhombic cell to a hexagonal prism.

INDEX SYSTEM FOR CRYSTAL PLANES

The orientation of a crystal plane is determined by three points in the
plane, provided they are not collinear. If each point lay on a different crystal
axis, the plane could be specified by giving the coordinates of the points in
terms of the lattice constants a;, a5, a;. However, it turns out to be more useful
for structure analysis to specify the orientation of a plane by the indices deter-
mined by the following rules (Fig. 13).

* Find the intercepts on the axes in terms of the lattice constants a), a, aj.
The axes may be those of a primitive or nonprimitive cell.
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Figure 13 This plane intercepts
the a,, a,, a; axes at 3a,, 2ay, 28y
The reciprocals of these numbers
are 1 £ 3 The smallest three inte-
gers having the same ratio are 2, 3,
3, and thus the indices of the plane

are (233).

(100) (110) (111}

/

(200 (100)

Figure 14 Indices of important planes in a cubic crystal. The plane {200) is parallel to {100) and
to (100}.

e Take the reciprocals of these numbers and then reduce to three integers
having the same ratio, usually the smallest three integers. The result, en-
closed in parentheses (hkI), is called the index of the plane.

For the plane whose intercepts are 4,1, 2, the reciprocals are 1, and 2. the
smallest three integers having the same ratio are (142). For an intercept at infin-
ity, the corresponding index is zero. The indices of some important planes in a
cubic crystal are illustrated by Fig. 14. The indices (hkl) may denote a single
plane or a set of parallel planes. If a plane cuts an axis on the negative side of the -
origin, the corresponding index is negative, indicated by placing a minus sign
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above the index: (hkl). The cube faces of a cubic crystal are (100), (010), (001),
(IOO), (OEO), and (001). Planes equivalent by symmetry may be denoted by curly
brackets (braces) around indices; the set of cube faces is {100}. When we speak
of the (200} plane we mean a plane parallel to (100} but cutting the a, axis at éa.
The indices [uvw] of a direction in a crystal are the set of the smallest inte-
gers that have the ratio of the components of a vector in the desired direction,
referred to the axes. The a, axis is the [100] direction; the —a, axis is the [010]
direction. In cubic crystals the direction [hkl] is perpendicular to a plane (hki)
having the same indices, but this is not generally true in other crystal systems.

SIMPLE CRYSTAL STRUCTURES

We discuss simple crystal structures of general interest: the sodium chlo-
ride, cesium chloride, hexagonal close-packed, diamond, and cubic zinc sulfide

structures.

Sodium Chloride Structure

The sodium chloride, NaCl, structure is shown in Figs. 15 and 16. The
lattice is face-centered cubic; the basis consists of one Na* ion and one Cl™ ion

Figure 15 We may construct the sodium chloride
crystal structure by arranging Na® and Cl” ions alter-
nately at the lattice points of a simple cubic lattice. In
the crystal each ion is surrounded by six nearest neigh-
bors of the oppesite charge. The space lattice is fec,
and the basis has one Cl™ ion at 000 and one Na* jon at - :
333 The figure shows one conventional cubic cell, Figure 16 Model of sodium chloride. The sodium ions are
The ionic diameters here are reduced in relation to the  smaller than the chlorine ions. (Courtesy of A. N. Holden and

cell in order to clarify the spatial arrangement. F. Singer.)
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Figure 17 Natural crystals of lead sulfide, PbS, which has the Figure 18 The cesium chloride crystal

NaCl erystal structure. (Photograph by B. Burleson. ) structure, The space lattice is simple

cubic, and the basis has one Cs™ ion at

000 and one Cl™ ioz at3 3 3.

separated by one-half the body diagonal of a unit cube. There are four units of
NaCl in each unit cube, with atoms in the positions

Each atom has as nearest neighbors six atoms of the opposite kind. Represen-
tative crystals having the NaCl arrangement include those in the following
table. The cube edge a is given in angstroms; 1 A = 10" em = 107" m = 0.1
nm. Figure 17 is a photograph of crystals of lead sulfide {(PbS) from Joplin,
Missouri. The Joplin specimens form in beautiful cubes.

Cesium Chloride Structure

The cesium chloride structure is shown in Fig. 18. There is one molecule
r primitive cell, with atoms at the corners 000 and body-centered positions
3 of the simple cubic space lattice. Each atom may be viewed as at the center
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Figure 19 A close-packed layer of spheres is shown, with centers at points marked A. A second
and identical layer of spheres can be placed on top of this, above and parallel to the plane of the
drawing, with centers over the points marked B. There are two choices for a third layer. It can go
in over A or over C. If it goes in over A, the sequence is ABABAB . . . and the structure is hexagonal
close-packed. If the third layer goes in over C, the sequence is ABCABCABC . . . and the structure
is face-centered cubic.

A

B Figure 20 The hexagonal close-packed structure.
The atom positions in this structure do not constitute
a space lattice. The space lattice is simple hexagonal
with a basis of two identical atoms associated with

A each lattice point. The lattice parameters a and ¢ are

indicated, where a is in the basal plane and ¢ is the
magnitude of the axis ay of Fig. 12.

of a cube of atoms of the opposite kind, so that the number of nearest neigh-
bors or coordination number is eight.

Hexagonal Close-Packed Structure (hcp)

There are an infinite number of ways of arranging identical spheres in a
regular array that maximizes the packing fraction (Fig. 19). One is the face-
centered cubic structure; another is the hexagonal close-packed structure
(Fig. 20). The fraction of the total volume occupied by the spheres is 0.74 for
both structures. No structure, regular or not, has denser packing,

15



Figure 21 The primitive cell has a;, = a,, with an
included angle of 120°. The ¢ axis (or a,) is normal
to the plane of a; and a,. The ideal hep structure has
¢ = 1.633 a. The two atoms of one basis are shown
as solid circles. One atom of the basis is at the ori-
gin; the other atom is at 223 which means at the

. 2 1 L
position r = za, + za, + 3a,.

Spheres are arranged in a single closest-packed layer A by placing each
sphere in contact with six others in a plane. This layer may serve as either the
basal plane of an hep structure or the (111) plane of the fec structure. A sec-
ond similar layer B may be added by placing each sphere of B in contact with
three spheres of the bottom layer, as in Figs. 19-21. A third layer C may be
added in two ways. We obtain the fcc structure if the spheres of the third layer
are added over the holes in the first layer that are not occupied by B. We
obtain the hep structure when the spheres in the third layer are placed directly
over the centers of the spheres in the first layer.

The number of nearest-neighbor atoms is 12 for both hep and fee struc-
tures. If the binding energy (or free energy) depended only on the number of
nearest-neighbor bonds per atom, there would be no difference in energy
between the fce and hep structures,

Diamond Structure

The diamond structure is the structure of the semiconductors silicon and
germanium and is related to the structure of several important semiconductor
binary compounds. The space lattice of diamond is face-centered cubic. The
primitive basis of the diamond structure has two identical atoms at coordinates
000 and ;3% associated with each point of the fcc lattice, as shown in Fig. 22.
Because the conventional unit cube of the fec lattice contains 4 lattice points,
it follows that the conventional unit cube of the diamond structure contains
2 X 4 = 8 atoms. There is no way to choose a primitive cell such that the basis

of diamond contains only one atom.
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Figure 22 Atomic positions in the cubic cell of the diamond ~ Figure 23 Crystal structure of diamond,
structure projected on a cube face; fractions denote height showing the tetrahedral bond arrangement.
above the base in units of a cube edge. The points at 0 and 3
are on the fce lattice; those at 5 and S are on a similar lattice
displaced along the body diagonal by one-fourth of its length.

With a fee space lattice, the basis consists of two identical

atoms at 000 and § § +.

The tetrahedral bonding characteristic of the diamond structure is shown
in Fig, 23. Each atom has 4 nearest neighbors and 12 next nearest neighbors.
The diamond structure is relatively empty: the maximum proportion of the
available volume which may be filled by hard spheres is only 0.34, which is 46
percent of the filling factor for a closest-packed structure such as fec or hep.
The diamond structure is an example of the directional covalent bonding
found in column IV of the periodic table of elements. Carbon, silicon, germa-
nium, and tin can crystallize in the diamond structure, with lattice constants
a = 3.567, 5.430, 5.658, and 6.49 A, respectively. Here a is the edge of the
conventional cubic cell.

Cubic Zinc Sulfide Structure

The diamond structure may be viewed as two fce structures displaced
from each other by one-quarter of a body diagonal. The cubic zinc sulfide
(zine blende) structure results when Zn atoms are placed on one fec lattice and
S atoms on the other fec lattice, as in Fig. 24. The conventional cell is a cube.

The coordinates of the Zn atoms are 000; 03 %; 5 0%; 53 0; the coordinates of the

S atoms are 3,552,312 325 The lattice is fee. There are four molecules of
ZnS per conventional cell. About each atom there are four equally distant

atoms of the opposite kind arranged at the corners of a regular tetrahedron.



Figure 24 Crystal structure of cubic zinc
sulfide.

The diamond structure allows a center-of-inversion symmetry operation
at the midpoint of every line between nearest-neighbor atoms. The inversion
operation carries an atom at r into an atom at —r. The cubic ZnS struc-
ture does not have inversion symmetry. Examples of the cubic zine sulfide
structure are

The close equality of the lattice constants of several pairs, notably (Al, Ga)P
and (Al, Ga)As, makes possible the construction of semiconductor heterojunc-
tions (Chapter 19),

DIRECT IMAGING OF ATOMIC STRUCTURE

Direct images of crystal structure have been produced by transmission
electron microscopy. Perhaps the most beautiful images are produced by scan-
ning tunneling microscopy; in STM {Chapter 19) one exploits the large varia-
tions in quantum tunneling as a function of the height of a fine metal tip above
the surface of a crystal. The image of Fig. 25 was produced in this way. An
STM method has been developed that will assemble single atoms into an orga-
nized layer nanometer structure on a crystal substrate.

NONIDEAL CRYSTAL STRUCTURES

The ideal crystal of classical crystallographers is formed by the periodic
repetition of identical units in space. But no general proof has been given that
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Figure 25 A scanning tunneling microscope
image of atoms on a (111) surface of fee plat-
inum at 4 K. The nearest-neighbor spacing is
2.78 A. (Photo courtesy of D. M. Eigler, IBM
Research Division.}

the ideal crystal is the state of minimum energy of identical atoms at the tem-
perature of absolute zero. At finite temperatures this is likely not to be true. We
give a further example here.

Random Stacking and Polytypism

The fec and hep structures are made up of close-packed planes of atoms.
The structures differ in the stacking sequence of the planes, fec having the se-
quence ABCABC . . . and hep having the sequence ABABAB . . . . Structures
are known in which the stacking sequence of close-packed planes is random.
This is known as random stacking and may be thought of as crystalline in two
dimensions and noncrystalline or glasslike in the third.

Polytypism is characterized by a stacking sequence with a long repeat
unit along the stacking axis. The best known example is zinc sulfide, ZnS, in
which more than 150 polytypes have been identified, with the longest period-
icity being 360 layers. Another example is silicon carbide, SiC, which occurs
with more than 45 stacking sequences of the close-packed layers. The polytype
of S5iC known as 393R has a primitive cell with a = 3.079 A and ¢ = 989.6 A.
The longest primitive cell observed for SiC has a repeat distance of 594 layers.
A given sequence is repeated many times within a single crystal. The mecha-
nism that induces such long-range crystallographic order is not a long-range
force, but arises from spiral steps due to dislocations in the growth nucleus
(Chapter 20).

CRYSTAL STRUCTURE DATA

In Table 3 we list the more common crystal structures and lattice structures
of the elements. Values of the atomic concentration and the density are given in
Table 4. Many elements occur in several crystal structures and transform from
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one to the other as the temperature or pressure is varied. Sometimes two struc-
tures coexist at the same temperature and pressure, although one may be slightly
more stable.

SUMMARY

¢ A lattice is an array of points related by the lattice translation operator
T =wua; + usa, + usa;, where u,, u,, 1, are integers and a,, a,, a; are the
crystal axes.

¢ To form a crystal we attach to every lattice point an identical basis composed

of s atoms at the positions r; = x;a; + y;a, + za;, withj = 1,2, ..., s. Here
x, y, z may be selected to have vaIues between 0and 1.

» The axes a,, a,, a; are primitive for the minimum cell volume |a,* a, X ag|
for which the crystal can be constructed from a lattice translation operator T
and a basis at every lattice point.

Problems

o,

_ Tetrahedral angles. The angles between the tetrahedral bonds of diamond are the
same as the angles between the body diagonals of a cube, as in Flg 10 Use elemenw
tary vector analysis to find the value of the angle.

2. Indices of planes. Consider the planes with indices {100) and (001); the lattice is

fce, and the indices refer to the conventional cubic cell. What are the indices of
these planes when referred to the primitive axes of Fig, 117

3. Hecp structure. Show that the c/a ratio for an ideal hexagonal close-packed struc-
" ture is (2)2 = 1.633. If ¢/a is significantly larger than this value, the erystal structure
may be thought of as composed of planes of closely packed atoms, the planes being
loosely stacked.
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CHAPTER 2: WAVE DIFFRACTION AND
THE RECIPROCAL LATTICE
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DIFFRACTION OF WAVES BY CRYSTALS

The Bragg law

We study crystal structure through the diffraction of photons, neutrons,
and electrons (Fig. 1). The diffraction depends on the crystal structure and on
the wavelength. At optical wavelengths such as 5000 A, the superposition of
the waves scattered elastically by the individual atoms of a crystal results in or-
dinary optical refraction. When the wavelength of the radiation is comparable
with or smaller than the lattice constant, we may find diffracted beams in
directions quite different from the incident direction.

W. L. Bragg presented a simple explanation of the diffracted beams from a
crystal. The Bragg derivation is simple but is convincing only because it repro-
duces the correct result. Suppose that the incident waves are reflected specu-
larly from parallel planes of atoms in the crystal, with each plane reflecting
only a very small fraction of the radiation, like 2 lightly silvered mirror. In
specular (mirrorlike) reflection the angle of incidence is equal to the angle of
reflection. The diffracted beams are found when the reflections from parallel
planes of atoms interfere constructively, as in Fig. 2. We treat elastic scatter-
ing, in which the energy of the x-ray is not changed on reflection.

Consider parallel lattice planes spaced d apart. The radiation is incident in
the plane of the paper. The path difference for rays reflected from adjacent
planes is 2d sin 6, where 6 is measured from the plane. Constructive interfer-
ence of the radiation from successive planes occurs when the path difference
is an integral number n of wavelengths A, so that

This is the Bragg law, which ean be satisfied only for wavelength A = 2d.

Although the reflection from each plane is specular, for only certain values
of 6 will the reflections from all periodic parallel planes add up in phase to give
a strong reflected beam. If each plane were perfectly reflecting, only the first
plane of a paralle! set would see the radiation, and any wavelength would be re-
flected. But each plane reflects 107% to 107° of the incident radiation, so that
10° to 10° planes may contribute to the formation of the Bragg-reflected beam in
a perfect crystal. Reflection by a single plane of atoms is treated in Chapter 17
on surface physics.

The Bragg law is a consequence of the periodicity of the lattice. Notice
that the law does not refer to the composition of the basis of atoms associated
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shows the analysis (obtained by reflection from a second erystal) of the purity of a 1.18 A beam of
neutrons from a calcium fluoride crystal monochromator. {(After G. Bacon.)
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Figure 4 X-ray diffractometer recording of powdered silicon, showing a counter recording of the
diffracted beams. {Courtesy of W. Parrish.)

with every lattice point. We shall see, however, that the composition of the
basis determines the relative intensity of the various orders of diffraction
(denoted by n above) from a given set of parallel planes. Bragg reflection from
a single crystal is shown in Fig. 3 and from a powder in Fig. 4.

SCATTERED WAVE AMPLITUDE

The Bragg derivation of the diffraction condition (1) gives a neat state-
ment of the condition for the constructive interference of waves scattered
from the lattice points. We need a deeper analysis to determine the scattering

S—




2 Reciprocal Lattice 27

intensity from the basis of atoms, which means from the spatial distribution of
electrons within each cell.

Fourier Analysis

We have seen that a crystal is invariant under any translation of the form
T = wia; + ugay + usas, where uy, uy, u; are integers and a;, a,, a; are the crystal
axes. Any local physical property of the crystal, such as the charge concentra-
tion, electron number density, or magnetic moment density is invariant under T,
What is most important to us here is that the electron number density n(r} is a
periodic function of r, with periods a;, a,, a; in the directions of the three crys-
tal axes, respectively. Thus

n{r + T) =nlr) . (2)

Such periodicity creates an ideal situation for Fourier analysis. The most inter-
esting properties of crystals are directly related to the Fourier components of
the electron density.

We consider first a function n(x) in one dimension with period ¢ in the
direction x. We expand n{x) in a Fourier series of sines and cosines:

nix) =ny+ E [C,, cos(2mpx/a) + S, sin(2mpx/a)i | {3)

p>0

where the p are positive integers and C,, S, are real constants, called the
Fourier coefficients of the expansion. The factor 27/a in the arguments en-
sures that n(x) has the period a:

n{x +a)=ny+ E[CP cos{2mpx/a + 2mp) + S, sin(2mpx/a + 2p)] @
4
=ny+ E[CP cos(2mpr/a) -+ S, sin(2mpx/a)] = nix) .

We say that 2mp/a is a point in the reciprocal lattice or Fourier space of the
crystal. In one dimension these points lie on a line. The reciprocal lattice
points tell us the allowed terms in the Fourier series (4) or (5). A term is al-
lowed if it is consistent with the periodicity of the crystal, as in Fig. 5; other

nix)

Figure 5 A periodic function n{x) of
period a, and the terms 2wp/a that
may appear in the Fourier transform

a4 a a a n(x) = Enp exp(i2mpx/a).
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points in the reciprocal space are not allowed in the Fourier expansion of a pe-
riodic funection.
It is convenient to write the series {4) in the compact form

n(x) HE n, expli2mpx/a) | (5)
P

where the sum is over all integers p: positive, negative, and zero. The coeffi-
cients n, now are complex numbers. To ensure that n(x) is a real function, we
require

(6)

ntp= Ny, >
for then the sum of the terms in p and —p is real. The asterisk on n*, denotes
the complex conjugate of n_,.

With ¢ = 2mpx/a, the sum of the terms in p and —p in (5) is real if (6) is

satisfied. The sum is

np(cos @ +1isin @) + ngp(cos © — i sin @)

(7)

= {n, +n_,)cos @ +i(n,—n_)Jsin¢ ,
which in turn is equal to the real function
2Re{n,} cos ¢ — 2Im(n,} sin @ (8)

if (6) is satisfied. Here Reln,} and Im{n,} are real and denote the real
and imaginary parts of n,. Thus the number density n(x) is a real function, as
desired.

The extension of the Fourier analysis to periodic functions n{r) in three
dimensions is straightforward. We must find a set of vectors G such that

n(r)=§ ng exp(iG - r) (9)

is invariant under all crystal translations T that leave the crystal invariant. It
will be shown below that the set of Fourier coefficients ng determines the
x-ray scattering amplitude.

Inversion of Fourier Series. We now show that the Fourier coefficient n,,
in the series {3) is given by

n, = a! J. dx n(x) exp(—i2mpx/a) . (10}
0
Substitute (5) in (10) to obtain

n, =g} z Ty fo dx expli2m(p’ — p)x/a] . (11)
" .
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If p' # p the value of the integral is

S C— 0l 2 D
€ >
i2m(p’ — p) (

because p’ — p is an integer and exp[i2n{integer)] = 1. For the term p’ = p the
integrand is exp(i0) = 1, and the value of the integral is a, so that n, = a"lnpa =
n,, which is an identity, so that (10) is an identity.

As in (10), the inversion of (9) gives

ng=V," J‘ ) dV n(r) exp(—iG - r) . (12}

Here V, is the volume of a cell of the crystal.

Reciprocal Lattice Vectors

To proceed further with the Fourier analysis of the electron concentration we
must find the vectors G of the Fourier sum Zng exp(iG - r) as in (9). There is a
powerful, somewhat abstract procedure for doing this. The procedure forms the
theoretical basis for much of solid state physics, where Fourier analysis is the
order of the day.

We construct the axis vectors by, by, bs of the reciprocal lattice:

The factors 27 are not used by crystallographers but are convenient in solid state
physics.

If a), a;, a; are primitive vectors of the crystal lattice, then by, by, by are
primitive vectors of the reciprocal lattice. Each vector defined by (13) is
orthogonal to two axis vectors of the crystal lattice. Thus by, by, b; have the
property ’

b, a, =278, , (14)

Whereﬁg = 1ifi :jandSy = 0ifi # .
Points in the reciprocal lattice are mapped by the set of vectors

G = Ulbl + U2b2 + U3b3 5 (15)

where v, vg, v5 are integers. A vector G of this form is a reciprocal lattice vector.

The vectors G in the Fourier series (9) are just the reciprocal lattice vectors (13),
for then the Fourier series representation of the electron density has the desired in-
variance under any crystal translation T = u,a; + uya, + uza;. From (9),

n(r +7T) = E ng exp(iG - r) exp(iG - T) . (16)
C
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But exp(iG - T) = 1, because

exp(iG - T) = expli(v|b; + vsby +v5hy) « (1,2, + usa, +ua,)]

= expli2m(vm, + vgug + vauy)]

(17)

The argument of the exponential has the form 2i times an integer, because
vty + vty + vgiy is an integer, being the sum of products of integers. Thus by
(9) we have the desired invariance, n{r + T) = n(r) = >, n¢ exp(iG - 1).

Every crystal structure has two lattices associated with it, the crystal lattice
and the reciprocal lattice. A diffraction pattern of a crystal is, as we shall show,

- a map of the reciprocal lattice of the crystal. A microscope image, if it could be

resolved on a fine enough scale, is a map of the crystal structure in real space.
The two lattices are related by the definitions (13). Thus when we rotate a crys-
tal in a holder, we rotate both the direct lattice and the reciprocal lattice.

Vectors in the direct lattice have the dimensions of [length]; vectors in the
reciprocal lattice have the dimensions of [Vlength]. The reciproeal lattice is a
lattice in the Fourier space associated with the crystal. The term is motivated
below. Wavevectors are always drawn in Fourier space, so that every position
in Fourier space may have a meaning as a description of a wave, but there is a
special significance to the points defined by the set of G’s associated with a
crystal structure.

Diffraction Conditions

Theorem. The set of reciprocal lattice vectors G determines the possible
x-ray reflections.

We see in Fig. 6 that the difference in phase factors is explitk — k') - r]
between beams scattered from volume elements r apart. The wavevectors of
the incoming and outgoing beams are k and k. We suppose that the amplitude

.~~~ Crystal specimen

Outgoing beam

Incident beam giker

giker

Figure 6 The difference in path length of the incident wave k at the points O, ris r sin ¢, and the
difference in phase angle is (27r sin @)/A, which is equal to k + r. For the diffracted wave the dif-
ference in phase angle is —k’ - r. The total difference in phase angle is {k — k'} - r, and the wave
scattered from dV at r has the phase factor expli(k — k') - r] relative to the wave scattered from a
volume element at the origin O.
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Figure 7 Definition of the scattering vector Ak such that
k + Ak = k'. In elastic scattering the magnitudes satisfy
k' = k. Further, in Bragg scattering from a periodic lattice,
any allowed Ak must equal some reciprocal lattice vector G.

of the wave scattered from a volume element is proportional to the local elec-
tron concentration n(r). The total amplitude of the scattered wave in the di-
rection of k' is proportional to the integral over the crystal of n(r) dV times the
phase factor expli(k — k') - r].

In other words, the amplitude of the electric or magnetic field vectors in
the scattered electromagnetic wave is proportional to the following integral
which defines the quantity F that we call the scattering amplitude:

F=[dValr)explitk — k') - r]=[ dV n(r) exp(—idk *x) , (18)
where k — k' = —Ak, or
k+Ak=k" . (19}

Here Ak measures the change in wavevector and is called the scattering
vector (Fig. 7). We add Ak to k to obtain k', the wavevector of the scat-
tered beam.

We introduce into (18) the Fourier components (9) of n{r) to obtain for
the scattering amplitude

F=2 [dVngexpli(G— Ak) 1] . (20)
¢

When the scattering vector Ak is equal to a particular reciprocal lattice vector,

the argument of the exponential vanishes and F = Vng. It is a simple exercise
(Problem 4) to show that F is negligibly small when Ak differs significantly
from any reciprocal lattice vector.

In elastic scattering of a photon its energy fiw is conserved, so that the
frequency w’ = ck’ of the emergent beam is equal to the frequency of the inci-
dent beam. Thus the magnitudes k and k' are equal, and k* = k'%, a result that
holds also for elastic scattering of electron and neutron beams. From (21) we
found Ak = G or k + G = k', 5o that the diffraction condition is written as
(k + G)? =k% or
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This is the central result of the theory of elastic scattering of waves in a
periodic lattice. If G is a reciprocal lattice vector, so is —G, and with this sub-
stitution we can write (22) as

(23)

This particular expression is often used as the condition for diffraction.
Equation (23) is another statement of the Bragg condition (1). The result

of Problem 1 is that the spacing d(hkl) between parallel lattice planes that are

normal to the direction G = Ab, + kby + Iby is d(hkl) = 2a/1Gl. Thus the

result 2k - G = (32 may be written as
2(2m/A) sin 0 = 2m/d(hkl) |

or 2d(hkl) sin 8 = A. Here @ is the angle between the incident beam and the
crystal plane.

The integers hkl that define G are not necessarily identical with the in-
dices of an actual crystal plane, because the Akl may contain a common factor
n, whereas in the definition of the indices in Chapter 1 the common factor has
been eliminated. We thus obtain the Bragg result:

2d sin @ =n\ | (24)

where d is the spacing between adjacent parallel planes with indices hin,
kin, lin.

Laue Equations

The original result (21) of diffraction theory, namely that Ak = G, may be
expressed in another way to give what are called the Laue equations. These
are valuable because of their geometrical representation. Take the scalar prod-
uct of both Ak and G successively with a;, ay, a,. From (14) and (13) we get

a; * Ak =270, | a; * Ak = 27, az Ak = 27v, . (25}

These equations have a simple geometrical interpretation. The first equation
a; + Ak = 2o, tells us that Ak lies on a certain cone about the direction of a,.
The second equation tells us that Ak lies on a cone about a, as well, and the
third equation requires that Ak lies on a cone about ay. Thus, at a reflection
Ak must satisfy all three equations; it must lie at the common line of intersec-
tion of three cones, which is a severe condition that can be satisfied only by
Systematic sweeping or searching in wavelength or crystal orientation—or by
sheer accident.

A beautiful construction, the Ewald construction, is exhibited in F ig. 8.
This helps us visualize the nature of the accident that must occur in order to
satisfy the diffraction condition in three dimensions.
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Figure 8 The points on the right-hand side are reciprocal-lattice points of the crystal. The vector
k is drawn in the direction of the incident x-ray beam, and the origin is chosen such that k termi-
nates at any reciprocal lattice point. We draw a sphere of radins k = 2@/A about the origin of k.
A diffracted beam will be formed if this sphere intersects any other point in the reciprocal lattice.
The sphere as drawn intercepts a point connected with the end of k by a reciprocal lattice vector
G. The diffracted x-ray beam is in the direction k' = k + G. The angle ¢ is the Bragg angle of
Fig. 2. This construction is due to P. P. Ewald.

BRILLOUIN ZONES

Brillouin gave the statement of the diffraction condition that is most
widely used in solid state physics, which means in the description of electron
energy band theory and of the elementary excitations of other kinds. A
Brillouin zone is defined as a Wigner-Seitz primitive cell in the reciprocal lat-
tice. (The construction in the direct lattice was shown in Fig. 1.4.} The
Brillouin zone gives a vivid geometrical interpretation of the diffraction condi-
tion 2k - G = G?of Eq. (23). We divide both sides by 4 to obtain

k-(:6)=(GG) . (26)

We now work in reciprocal space, the space of the ks and G%. Select a
vector G from the origin to a reciprocal lattice point. Construct a plane normal
to this vector G at its midpoint. This plane forms a part of a zone boundary
(Fig. 9a). An x-ray beam in the crystal will be diffracted if its wavevector k has
the magnitude and direction required by (26). The diffracted beam will then
be in the direction k — G, as we see from (19) with Ak = —G. Thus the
Brillouin construction exhibits all the wavevectors k which can be Bragg-
reflected by the crystal.
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Figure 9a Reciprocal lattice points near the point O at
the origin of the reciprocal lattice. The reciprocal lattice
vector G connects points OC; and G, connects OD.
Two planes 1 and 2 are drawn which are the perpendic-
ular hisectors of Gg and Gp, respectively. Any vecter
from the origin to the plane 1, such as ky, will satisfy the
diffraction condition k, * (5G¢) = (5 G¢)>. Any vector
from the origin to the plane 2, such as k,, will satisfy the
diffraction condition k, - (£ G} = & Gp)2.

Figure Sb Square reciprocal latiice with reciprocal
lattice vectors shown as fine black lines. The lines
shown in: white are perpendicular hisectors of the rec-
iprocal lattice vectors. The central square is the small-
est volume about the origin which is bounded entirely
by white lines. The square is the Wigner-Seitz primi-
tive cell of the reciprocal lattice. It is called the first
Brillouin zone.

The set of planes that are the perpendicular bisectors of the reciprocal
lattice vectors is of general importance in the theory of wave propagation in
crystals: A wave whose wavevector drawn from the origin terminates on any of
these planes will satisfy the condition for diffraction. These planes divide the
Fourier space of the crystal into fragments, as shown in Fig. 9b for a square
lattice. The central square is a primitive cell of the reciprocal lattice. It is a
Wigner-Seitz cell of the reciprocal lattice.

The central cell in the reciprocal lattice is of special importance in the the-
ory of solids, and we call it the first Brillouin zone. The first Brillouin zone is
the smallest volume entirely enclosed by planes that are the perpendicular bi-
sectors of the reciprocal lattice vectors drawn from the origin. Examples are

shown in Figs. 10 and 11.

Historically, Brillouin zones are not part of the language of x-ray diffrac-
tion analysis of crystal structures, but the zones are an essential part of the
analysis of the electronic energy-band structure of crystals.

Beciprocal Lattice to sc Lattice

The primitive translation vectors of a simple cubic lattice may be taken as

the set

A~

a; = ax ;

a;, =ay ; a, = az . (27a)
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Figure 10 Construction of the first Brillouin
. zane for an oblique lattice in two dimensions. We

first draw a number of vectors from O to nearhy

points in the reciprocal lattice. Next we construct

lines perpendicular to these vectors at their mid-

points. The smallest enclosed area is the first Bril-
. louin zone.

k:—% k:

2y

Figure 11 Crystal and reciprocal lattices in one dimension. The basis vector in the reciprocal lat-
tice is b, of length equal to 2#/a. The shortest reciprocal lattice vectors from the origin are b and
—b. The perpendicular bisectors of these vectors form the boundaries of the first Brillouin zone.
The boundaries are atk = *ava.

Here %, ¥, Z are orthogonal vectors of unit length. The volume of the cell is
a, * a, X a; = a°. The primitive translation vectors of the reciprocal lattice are
found from the standard prescription (13):

b, = 2wa)x ; b, = 2n/a)y ; b, = 2w/a)z . (27Db)

Here the reciprocal lattice is itself a simple cubic lattice, now of lattice
constant 27/a.
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Figure 13 First Brillouin zone of the body-

Figure 12 Primitive basis vectors of the body-centered centered cubic lattice. The figure is a regular

cubic lattice.

rhombic dodecahedron.

The boundaries of the first Brillouin zones are the planes normal to the six
reciprocal lattice vectors b, =b,, *+b, at their midpoints:

~

+ob, = )k ; +sh, = T(wla)y ; Tiby= *(wa)z . (28)

The six planes bound a cube of edge 27/a and of volume (27/a)%; this cube is
the first Brillouin zone of the sc crystal lattice.

Reciprocal Lattice to bee Lattice
The primitive translation vectors of the bee lattice (Fig. 12) are
a1=%a(-ﬁ+§7+%) : a2=éa(i—§/+ﬁ) : aSZ%a(i+j}~i) , (29)
where a is the side of the conventional cube and X, ¥,z are orthogonal unit
vectors parallel to the cube edges. The volume of the primitive cell is
Ve=la -a; X ag| =44° (30)

The primitive translations of the reciprocal lattice are defined by (13). We
have, using (28),

b, = 2u/a)(y + z) ; b, = (27/a)(x + 7) ; by =(2wa)x+y) . (31)

Note by comparison with Fig. 14 (p. 37) that these are just the primitive
vectors of an fcc lattice, so that an fec lattice is the reciprocal lattice of the bee
lattice.

The general reciprocal lattice vector is, for integral v}, vy, v,,

G = vib; + v9by + v4by = 2a/a)[(vy + vy)% + (v, + vgly + (v +09)z] . (32)
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Figure 14 Primitive basis vectors of the
face-centered cubic lattice,

The shortest G’s are the following 12 vectors, where all choices of sign are
independent:

(2mia)(ty £ 7) ; Omiaxx *2) ; 2mla)(£x £ y) . (33)

One primitive cell of the reciprocal lattice is the parallelepiped described
by the by, by, by defined by (31). The volume of this cell in reciprocal space
is by by X by = 2(2m/a)°. The cell contains one reciprocal lattice point,
because each of the eight corner points is shared among eight parallelepipeds.
Each parallelepiped contains one-eighth of each of eight corner points (see
Fig. 12).

Another primitive cell is the central (Wigner-Seitz) cell of the reciprocal
lattice which is the first Brillouin zone. Each such cell contains one lattice
point at the central point of the cell. This zone (for the bce lattice) is bounded
by the planes normal to the 12 vectors of Eq. (33) at their midpoints. The zone
is a regular 12-faced solid, a rhombic dodecahedron, as shown in Fig. 13.

Reciprocal Lattice to fcc Lattice

The primitive translation vectors of the fec lattice of Fig. 14 are
_1 N PPN _1 .
al——éa(y—I—z) : az——ga(x-é-z) . a3—§a(x+y) . (34)

The volume of the primitive cell is

Vﬁial'aZXaB{z @’ . (35)

s [
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dmia

Figure 15  Brillouin zones of
the face-centered cubic lattice.
The cells are in reciprocal space,
and the reciprocal lattice is body
centered.

The primitive translation vectors of the lattice reciprocal to the fcc
lattice are

b, = 2w/a)—Xx +y+z) ; b, = 27/a)(x —y + 2} ;

b; = 2w/a)x+y—12) . (36)

These are primitive translation vectors of a bece lattice, so that the bec lattice is
reciprocal to the fec lattice. The volume of the primitive cell of the reciprocal
lattice is 4(27/a)®,

The shortest Gs are the eight vectors:

(2mla)Ex Ty %) . {37)

The boundaries of the central cell in the reciprocal lattice are determined
for the most part by the cight planes normal to these vectors at their
midpoints. But the corners of the octahedron thus formed are cut by the
planes that are the perpendicular bisectors of six other reciprocal lattice
vectors:

(2m/a)(+2x) | (2mia)(=2y) ; (Smia)(*2z) . (38)

Note that (27/a}(2%) is a reciprocal lattice vector because it is equal to by + b,.
The first Brillouin zone is the smallest bounded volume about the origin, the
truncated octahedron shown in Fig. 15. The six planes bound a cube of edge
47/a and (before truncation) of volume (4w/a)’.



2 Reciprocal Lattice

FOURIER ANALYSIS OF THE BASIS

When the diffraction condition Ak = G of Eq. (21} is satisfied, the scatter-
ing amplitude (18) for a crystal of N cells may be written as

Fo=N . dV n{r) exp(—iG 1) = NS¢ . (39)
e
The quantity S¢ is called the structure factor and is defined as an integral
over a single cell, with r = 0 at one corner.

Often it is useful to write the electron concentration n(r) as the super-
position of electron concentration functions n; associated with each atom j
of the cell. If r; is the vector to the center of atom j, then the function
ny(r — 1)) defines the contribution of that atom to the electron concentration
at r. The total electron concentration at r due to all atoms in the single cell is

the sum
n(r) = ilnj(r - ) (40)
=

over the s atoms of the basis. The decomposition of n{r) is not unique, for we
cannot always say how much charge density is associated with each atom. This
is not an important difficulty.

The structure factor defined by (39) may now be written as integrals over
the s atoms of a cell:

Se¢= 2 J dVnlr — x) exp(—iG ' 1)
' (41)

o ; exp(—iG * I}) Jav nj(.ﬂ) exp(—iG *p) ,

where p = r — r;, We now define the atomic form factor as

integrated over all space. If n,(p) is an atomic property, f; is an atomic property.
We combine (41)and (42) to obtain the structure factor of the basis in
the form

S = E_ f; exp(—iG - x;) . (43)
J

The usual form of this result follows on writing for atom j:

Y, =xa) T ya; t2a; (44)
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as in (1.2). Then, for the reflection labelled by v;, vy, vs, we have

G ‘1, = (v,by + v5by + v3by) - (xja) + yia, + z83)

= 2m{v; + vgy; Uz
so that (43) becomes

Selviogvs) = 2]5 EXP[_E'ZW(MXJ T ogy; + Dﬁzj)] . (46)
J

The structure factor S need not be real because the scattered intensity will
involve $*S, where S* is the complex conjugate of § so that §*S is real.

Structure Factor of the bee Lattice

The bece basis referred to the cubic cell has identical atoms at x; =y, =
z; = O and at x, = ¢, = 2, = 3. Thus (46) becomes

Slowevs) = f{1 + exp[—im(v, + vy + va)]} {47)

where f is the form factor of an atom. The value of S is zero whenever
the exponential has the value —1, which is whenever the argument
is —imr X {odd integer). Thus we have

§=0 when v, + vy + v3 = odd integer ;
S=2f  whenov, + v, + vg = even integer .

Metallic sodium has a bee structure. The diffraction pattern does not con-
tain lines such as (100}, {300}, (111}, or (221), but lines such as (200), (110}, and
(222) will be present; here the indices {vyv,0,) are referred to a cubic cell. What
is the physical interpretation of the result that the (100) reflection vanishes?
The {100) reflection normally occurs when reflections from the planes that
bound the cubic cell differ in phase by 2. In the bec lattice there is an inter-
vening plane {Fig. 16) of atoms, labeled the second plane in the figure, which is
equal in scattering power to the other planes. Situated midway between them,
it gives a reflection retarded in phase by 7 with respect to the first plane,
thereby canceling the contribution from that plane. The cancellation of the
(100) reflection occurs in the bec lattice because the planes are identical in
composition. A similar cancellation can easily be found in the hep structure.

Structure Factor of the fcc Lattice

The basis of the fec structure referred to the cubic cell has identical atoms
at 000; 0£2; 05; 350. Thus (46) becomes

S{vyvgvg) = f{l + expl—im(vg + v5)] + exp[—im(v, + v)] (48)

+ exp|—im(v; + vl .
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AR

Figure 16 Explanation of the absence of a (100) reflection from a body-centered cubic lattice.
The phase difference between successive planes is 7, so that the reflected amplitude from two
adjacent planesis 1 + ¢ =1 —-1=0.

If all indices are even integers, S = 4f; similarly if all indices are odd integers.
But if only one of the integers is even, two of the exponents will be odd multi-
ples of —im and S will vanish. If only one of the integers is odd, the same argu-
ment applies and § will also vanish. Thus in the fcc lattice no reflections can
occur for which the indices are partly even and partly odd.

The point is beautifully illustrated by Fig. 17: both KCl and KBr have an
fee lattice, but n(r) for KCl simulates an sc lattice because the K* and Cl~ ions
have equal numbers of electrons.

Atomic Form Factor

In the expression (46) for the structure factor, there occurs the quantity f;,
which is a measure of the scattering power of the jth atom in the unit cell. The
value of f involves the number and distribution of atomic electrons, and the
wavelength and angle of scattering of the radiation. We now give a classical
calculation of the scattering factor.

The scattered radiation from a single atom takes account of interference
effects within the atom. We defined the form factor in (42):

fi =1 dValr) exp(—iG - r) , (49)

with the integral extended over the electron concentration associated with a
single atom. Let r make an angle a with G; then G - r = Gr cos a. If the elec-
tron distribution is spherically symmetric about the origin, then

fy=2m [ drr* d(cos ) ny(r) exp(—iGr cos a)

i ~iGr

- , el e ™
= 2 [ dr rznj(r) iCr )
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I ] T f ] ] |
(200}
KCl
(220)
(420 (400) (222)
A L _——
I 1 I i I ]
] [ I i I I (2OO)|
KBr
Figure 17 Comparison of x-ray reflections from KCl (220)
and KBr powders. In KCl the numbers of electrons
of K* and Cl” ions are equal. The scattering amphi-
tudes f{K*) and A{CI7) are almost exactly equal, so
that the crystal looks to x-rays as if it were a (111)
monatomic simple cubic lattice of lattice constant (420} (292}
a/2. Only even integers occur in the reflection indices (400) 311
when these are based on a cubic lattice of lattce con- (331) (311)
stant ¢, In KBr the form factor of Br™ is quite differ- —,—A—J

ent to that of K', and all reflections of the fec 80° 70° 60° 50° 40° 30° 20°

lattice are present. (Courtesy of R. van Nordstrand.) ~—24

after integration over d(cos a) between —1 and 1. Thus the form factor is
given by

If the same total electron density were concentrated at r = 0, only Gr = 0
would contribute to the integrand. In this limit (sin Gr)/Gr = 1, and

fj =d4qr [ dr nj('r)"r2 =7 (51)

the number of atomic electrons. Therefore f is the ratio of the radiation ampli-
tude scattered by the actual electron distribution in an atom to that scattered
by one electron localized at a point. In the forward direction G = 0, and f
reduces again to the value Z.

The overall electron distribution in a solid as seen in x-ray diffraction is
fairly close to that of the appropriate free atoms. This statement does not
mean that the outermost or valence electrons are not redistributed somewhat
in forming the solid; it means only that the x-ray reflection intensities are
represented well by the free atom values of the form factors and are not very
sensitive to small redistributions of the electrons.
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SUMMARY

Various statements of the Bragg condition:

2d sin 8 = nA Ak = G ; ok -G = G? .

Laue conditions:

a; - Ak = 270, ; a, ' Ak = 27, ; a; * Ak = 27rv; .
o The primitive translation vectors of the reciprocal lattice are
a, Xa a; X a; a; X &g
b, = 27— S Vo B T b= 02782
1 27Ta]_°3.2><33 ’ bz QWal'aQ‘Xa:} ’ 3 wal'agxa{g

Here a,, a,, a; are the primitive translation vectors of the crystal lattice.

A reciprocal lattice vector has the form
G =uvb, + vsby, +vbs,

where vy, vy, U3 are integers or zero.

The scattered amplitude in the direction k' = k + Ak = k + G is propor-
tional to the geometrical structure factor:

Se= Eﬁ exp(—ir; + G) = Efj exp[—i2a(xpr + ys + 2]

where j runs over the s atoms of the basis, and f; is the atomic form factor
(49) of the jth atom of the basis. The expression on the right-hand side is
written for a reflection (vv4v,), for which G = v.b; + v3by + v3bs.

o Any function invariant under a lattice translation T may be expanded in a
Fourier series of the form

n(r) = EG:, ne expl(iG - 1) .

e The first Brillouin zone is the Wigner-Seitz primitive cell of the reciprocal
lattice. Only waves whose wavevector k drawn from the origin terminates on
a surface of the Brillouin zone can be diffracted by the crystal.

¢ Crystal lattice First Brillouin zone
Simple cubic Cube
Body-centered cubic Rhombic dodecahedron (Fig. 13)
Face-centered cubic Truncated octahedron (Fig. 15)
Problems

1. Interplanar separation. Consider a plane hkl in a crystal lattice. (a) Prove that the
reciprocal -lattice vector G = hb, + kb, + Ib; is perpendicular to this plane. (b)
Prove that the distance between two adjacent parallel planes of the lattice is
d(hkl) = 27/|G]. (c) Show for a simple cubic lattice that d% = a*(h® + k* + %),
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‘2,

@j

Hexagonal space lattice. The primitive translation vectors of the hexagonal space
lattice may be taken as

a; = (3Y%a/2)% + (a2)y ; a, = —(3%a/2)x + (a2)y a,=c¢z .

(a) Show that the volume of the primitive cell is (3"%/2)a’c.
(b) Show that the primitive translations of the reciprocal lattice are

b, = (27/3"%a)% + 27/a)y b, = —(2a/3"%a)x + (2n/a)y ; b, = (27/c)z |

so that the lattice is its own reciprocal, but with a rotation of axes.
(¢) Describe and sketch the first Brillouin zone of the hexagonal space lattice.

. Yolume of Brillouin zone. Show that the volume of the first Brillouin zone is

(2m)%V,, where V, is the volume of a crystal primitive cell. Hint: The volume of a
Brillouin zone is equal to the volume of the primitive parallelepiped in Fourier
space. Recall the vector identity (e X a) X (a X b) =(¢-a X b)a.

Width of diffraction maximum. We suppose that in a linear crystal there are
identical point scattering centers at every lattice point p,, = ma, where m is an inte-
ger. By analogy with (20), the total scattered radiation amplitude will be proportional
to F = 2 exp[—ima - Ak]. The sum over M lattice points is

1= exp[—iM(a - Ak]
© 1 - exp[—ia-AK)]

by the use of the series

M-1 m__l_:’CM
x =
m=0 1—x

(a) The scattered intensity is proportional to [F|*. Show that

sin® M{a - Ak)

sin” s (a * Ak)
{b) We know that a diffraction maximum appears when a » Ak = 27h, where h is an
integer. We change Ak slightly and define € in a + Ak = 27h + € such that € gives

the position of the first zero in sin sM(a - Ak). Show that € = 27/M, so that the width
of the diffraction maximum is proportional to 1/M and can be extremely narrow for

[F]P=FF=

macroscopic values of M. The same result holds true for a three-dimensional crystal.

Structure factor of diamond. The crystal structure of diamond is described in
Chapter 1. The basis consists of eight atoms if the cell is taken as the conventional
cube. (a) Find the structure factor S of this basis. (b) Find the zeros of S and show
that the allowed reflections of the diamond structure satisfy v, + vy + vy = 4n,
where all indices are even and n is any integer, or else all indices are odd (Fig. 18).
{(Notice that h, k, [ may be written for v,, vy, v; and this is often done.)

. Form factor of atomic hydrogen. For the hydrogen atom in its ground state, the

number density is n(r) = (7rag) ! exp(—2r/ay), where g, is the Bohr radius. Show that
the form factor is fo = 16/(4 + G%d)*
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(111)

Neutron intensity,
counts per minute

0 ! L 1 i 1 I
20° 30° 45° 60° 75°
Counter position 26

Figure 18 Neutron diffraction pattern for powdered diamond. {After G. Bacon.}

7. Diatomic line. Consider a line of atoms ABAB . . . AB, with an A—B bond length
of 3a. The form factors are f,, f; for atoms A, B, respectively. The incident beam of
x-rays is perpendicular to the line of atoms. (a} Show that the interference condition
is nA = a cos 8, where 6 is the angle between the diffracted beam and the line of
atoms. (b) Show that the intensity of the diffracted beam is proportional to [f, — f3i*
for n odd, and to |f, + f3|* for n even. (c) Explain what happens if f; = f5.
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Energy

Metal Semimetal Semiconductor Semiconductor

Insulator

Figure 1 Schematic electron occupancy of allowed energy bands for an insulator, metal semj-
metal, and semiconductor. The vertical extent of the boxes indicates the allowed energy regions;
the shaded areas indicate the regions filled with electrons. In a semimetal (such as bismuth) one
band is almost filled and another band is nearly empty at absolute zero, but a pure semiconduc-
tor (such as silicon) becomes an insulator at absolute zero. The left of the two semiconductors
shown is at a finite temperature, with carriers excited thermaliy. The other semiconductor is
electron-deficient because of impurities,



CHAPTER 7: ENERGY BANDS

When I started to think about it, I felt that the
main problem was to explain how the electrons
could sneak by all the ions in a metal. ... By
straight Fourier analysis I found to my delight
that the wave differed from the plane wave of
free electrons only by a periodic modulation.

F. Bloch

The free electron model of metals gives us good insight into the heat
capacity, thermal conductivity, electrical conductivity, magnetic susceptibility,
and electrodynamics of metals. But the model] fails to help us with other large
questions: the distinction between metals, semimetals, semiconductors, and
insulators; the occurrence of positive values of the Hall coefficient; the rela-
tion of conduction electrons in the metal to the valence electrons of free
atoms; and many transport properties, particularly magnetotransport. We need
a less naive theory, and fortunately it turns out that almost any simple attempt
to improve upon the free electron model is enormously profitable.

The difference between a good conductor and a good insulator is striking.
The electrical resistivity of a pure metal may be as low as 10 '° ohm-cm at a
temperature of 1 K, apart from the possibility of superconductivity. The resis-
tivity of a good insulator may be as high as 10*> ohm-cm. This range of 10%
may be the widest of any common physical property of solids.

Every solid contains electrons. The important question for electrical con-
ductivity is how the electrons respond to an applied electric field. We shall see
that electrons in crystals are arranged in energy bands (Fig. 1) separated by
regions in energy for which no wavelike electron orbitals exist. Such forbidden
regions are called energy gaps or band gaps, and result from the interaction
of the conduction electron waves with the ion cores of the crystal.

The crystal behaves as an insulator if the allowed energy bands are either
filled or empty, for then no electrons can move in an electric field. The crystal
behaves as a metal if one or more bands are partly filled, say between 10 and
90 percent filled. The crystal is a semiconductor or a semimetal if one or two
bands are slightly filled or slightly empty.

To understand the difference between insulators and conductors, we must
extend the free electron model to take account of the periodic lattice of the solid.
The possibility of a band gap is the most important new property that emerges.

We shall encounter other quite remarkable properties of electrons in crys-
tals. For example, they respond to applied electric or magnetic fields as if the
electrons were endowed with an effective mass m*, which may be larger or
smaller than the free electron mass, or may even be negative. Electrons in

163



164

crystals respond to applied fields as if endowed with negative or positive
charges, —e or +e, and herein lies the explanation of the negative and positive
values of the Hall coefficient.

NEARLY FREE ELECTRON MODEL

Ou the free electron model the allowed energy values are distributed es-
sentially continuously from zero to infinity. We saw in Chapter 6 that

a=T kR (1)
m X y = ?
where, for periodic boundary conditions over a cube of side L,

_ 2 dar
ke ky k. =0 ; e s R (2)

The free electron wavefunctions are of the form
() = exp(ik - 1) ; (3)

they represent running waves and carry momentum p = k.

The band structure of a crystal can often be explained by the nearly free
electron model for which the band electrons are treated as perturbed only
weakly by the periodic potential of the ion cores. This model answers almost
all the qualitative questions about the behavior of electrons in metals.

We know that Bragg reflection is a characteristic feature of wave propaga-
tion in crystals. Bragg reflection of electron waves in crystals is the cause of
energy gaps. (At Bragg reflection wavelike solutions of the Schrédinger equa-
tion do not exist, as in Fig. 2.) These energy gaps are of decisive significance in
determining whether a solid is an insulator or a conductor.

We explain physically the origin of energy gaps in the simple problem of a
linear solid of lattice constant a. The low energy portions of the band structure

Second

allowed

A

I I

! i

i |

i I

i 1

I m
a

{a) (b)
Figure 2 (a) Plot of energy e versus wavevector k for a free electron. (b) Plot of energy versus
wavevector for an electron in a monatomic linear lattice of lattice constant 2. The energy gap E,

shown is associated with the first Bragg reflection at k = =m/a; other gaps are found at higher
energies at n+r/a, for integral values of n.
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are shown qualitatively in Fig. 2, in (a) for entirely free electrons and in (b) for
electrons that are nearly free, but with an energy gap at k = £m/a. The Bragg
condition (k + G)* = k? for diffraction of a wave of wavevector k becomes in
one dimension

k=G = *nma , (4)

where G = 2an/a is a reciprocal lattice vector and n is an integer. The first re-
flections and the first energy gap occur at k = */a. The region in k space be-
tween —m/a and 7/a is the first Brillouin zone of this lattice. Other energy
gaps occur for other values of the integer n.

The wavefunctions at k = /g are not the traveling waves exp(imx/a) or
exp(—imx/a) of free electrons. At these special values of k the wavefunctions
are made up of equal parts of waves traveling to the right and to the left. When
the Bragg reflection condition k = *7/a is satisfied by the wavevector, a wave
traveling to the right is Bragg-reflected to travel to the left, and vice versa.
Fach subsequent Bragg reflection will reverse the direction of travel of the
wave. A wave that travels neither to the right nor to the left is a standing wave:
it doesn’t go anywhere.

The time-independent state is represented by standing waves. We can form
two different standing waves from the two traveling waves

exp(* imx/a) = cos(mx/a) T i sin(mx/a),
so that the standmg waves are

Y(+) = explimrz/a) + exp(—imx/a) = 2 cos (mx/a) :
5
() = explimrz/a) — exp(—imx/a) = 2isin (wx/a) . (5)
The standing waves are labeled (+) or (—) according to whether or not they
change sign when —x is substituted for x. Both standing waves are composed
of equal parts of right- and left-directed traveling waves.

Origin of the Energy Gap

The two standing waves ¢(+) and (=) pile up electrons at different
regions, and therefore the two waves have different values of the potential
energy in the field of the ions of the lattice. This is the origin of the energy
gap. The probability density p of a particle is y*iy = liyl*. For a pure traveling
wave exp(ikx), we have p = exp(—tkx) exp(ikx) = 1, so that the charge density
is constant. The charge density is not constant for linear combinations of plane
waves. Consider the standing wave y(+) in (3); for this we have

p(+) = [Y(+)|? o cos* msa .

This function piles up electrons (negative charge} on the positive ions centered
atx = 0,4, 2a, . . . in Fig. 3, where the potential energy is lowest.
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U, potential energy

Y Ion core e ——~>!

(a)

p, probability density

Traveling wave

X

(b)

Figure 3 (a) Variation of potential energy of a conduction electron in the field of the ion cores
of a linear lattice. (b) Distribution of probability density p in the lattice for ly(—)I* « sin® mv/a;
p(+)1? < cos® mx/a; and for a traveling wave. The wavefunction y(+) piles up electronic charge
on the cores of the positive ions, thereby lowering the potential energy in comparison with the
average potential energy seen by a traveling wave. The wavefunction y(~} piles up charge in
the region between the ions, thereby raising the potential energy in comparison with that seen by
a traveling wave. This figure is the key to understanding the origin of the energy gap.

Figure 3a pictures the variation of the electrostatic potential energy of a
conduction electron in the field of the positive ion cores. The ion cores bear a
net positive charge because the atoms are ionized in the metal, with the va-
lence electrons taken off to form the conduction band. The potential energy of
an electron in the field of a positive ion is negative, so that the force between
them is attractive.

For the other standing wave (—) the probability density is

p(=) = |¢(—) ] = sin* ma |

which concentrates electrons away from the ion cores. In F ig. 3b we show
the electron concentration for the standing waves y(+), ¢(—), and for a travel-
ing wave.

When we calculate the average or expectation values of the potential
energy over these three charge distributions, we find that the potential energy
of p(+) is lower than that of the traveling wave, whereas the potential energy of
p(—) is higher than the traveling wave. We have an energy gap of width E, it
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the energies of p(—) and p(+) differ by E,. Just below the energy gap at
points A in Fig. 2 the wavefunction is (), and just above the gap at points B
the wavefunction is ¢{—).

Magnitude of the Energy Gap

The wavefunctions at the Brillouin zone boundary k = a/a are V2 cos mx/a
and V2 sin /e, normalized over unit length of line. Let us suppose that the
potential energy of an electron in the crystal at point x is

Ulx) = U cos 2mx/a .

The first-order energy difference between the two standing wave states is

1
E,= f dbx Ulx) [Jg(+)]* = [w(=)]*) (6)

=2 fdx U cos(2mx/a)(cos® mx/a — sin® mx/a) = U .

We see that the gap is equal to the Fourier component of the crystal potential.

BLOCH FUNCTIONS

F. Bloch proved the important theorem that the solutions of the
Schrédinger equation for a periodic potential must be of a special form:

i (r) = u(r) exp(ik '_I') , (7)

where u(r) has the period of the crystal lattice with uy(r) = u{r + T). Here T
is a translation vector of the lattice. The result (7) expresses the Bloch theorem:

The eigenfunctions of the wave equation for a periodic potential are
the product of a plane wave exp(ik + r) times a function ,(r) with the
periodicity of the crystal lattice.

A one-electron wavefunction of the form (7) is called a Bloch function and
can be decomposed into a sum of traveling waves, as we see later. Bloch func-
tions can be assembled into wave packets to represent electrons that propa-
gate freely through the potential field of the ion cores.

We give now a restricted proof of the Bloch theorem, valid when s is
nondegenerate; that is, when there is no other wavefunction with the same
energy and wavevector as ;. The general casc will be treated later. We con-
sider N identical lattice points on a ring of length Na. The potential energy is
periodic in a, with U(x) = U(x + sa), where s is an integer.

Let us be guided by the symmetry of the ring to look for solutions of the
wave equation such that

ix + a) = Cilx) | (8)
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Figure 4 Square-well periodic potential as H H ’-

introduced by Kronig and Penney.

where C is a constant. Then, on going once around the ring,

Ylx + Na) = ¢h(x) = C¥ §lx)

because ¢{x) must be single-valued. It follows that C is one of the N roots of
unity, or

C = exp(i2ws/N) ; s=0,1,2 ... N—1. (9)
We use (9} to see that

Ylxy = ulx) exp{i2msx/Na) (10)

satisfies (8), provided that u,(x) has the periodicity a, so that u;(x) = u,(x + a).
This is the Bloch result (7).

KRONIG-PENNEY MODEL

A periodic potential for which the wave equation can be solved in terms of
elementary functions is the square-well array of F'ig. 4. The wave equation is

72 Ay

~ g gz U@ =€y, (1)

where U(x) is the potential energy and e is the energy eigenvalue.
In the region 0 < x < g in which U = 0, the eigenfunction is a linear

combination,
i = Ae™ + B (12)
of plane waves traveling to the right and to the left, with energy
e = #’K*/2m . (13)

In the region —b < x < 0 within the barrier the solution is of the form

= Ce®* + D™ (14)
with
Uy — € = K*Q%2m . (15)
Ulx)
UO

~{a+h) b 0 aa+h & e
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We want the complete solution to have the Bloch form (7). Thus the solu-
tion in the region a << x < a + b must be related to the solution (14) in the
region —b < x < 0 by the Bloch theorem:

pla<x<a+b)=y{-b <x<0)eik(a+b) \ {16)

which serves to define the wavevector k used as an index to label the

solution.

The constants A, B, C, D are chosen so that ¢ and di/dx are continuous at
x = 0 and x = a. These are the usual quantum mechanical boundary condi-
tions in problems that involve square potential wells. Atx = 0,

A+B=C+D ; (17)
iK(A—B)=Q(C —D) , (18)

with Q from (14). At x = a, with the use of {16) for ys(a) under the barrier in
terms of y(—b),

Aee + BeiKe = (Cg™ @ + D) gt (19)
iK(Ae™ — Be ) = O(Ce %% — De) ga™h) (20)

The four equations (17) to (20) have a solution only if the determinant of
the coefficients of A, B, C, D vanishes, yielding

(O — K*)/2QK] sinh Qb sin Ka + cosh Qb cos Ka = cosk{a +b) . (21a)

It is rather tedious to obtain this equation.

The result is simplified if we represent the potential by the periodic delta
function obtained when we pass to the limit b = 0 and Uy = % in such a way |
that Q%ba/2 = P, a finite quantity. In this limit Q > K and Qb < 1. Then (21a)

reduces to
(P/Ka)sin Ka + cos Ka = cos ka . (21b)

The ranges of K for which this equation has solutions are plotted in Fig. 5,
for the case P = 3m/2. The corresponding values of the energy are plotted in
Fig. 6. Note the energy gaps at the zone boundaries. The wavevector k of the
Bloch function is the important index, not the K in (12), which is related to the
energy by (13). A treatment of this problem in wavevector space is given later
in this chapter.

WAVE EQUATION OF ELECTRON IN A PERIODIC POTENTIAL

We considered in Fig. 3 the approximate form we expect for the solution
of the Schrédinger equation if the wavevector is at a zone boundary, as at
k = *m/a. We treat in detail the wave equation for a general potential, at general
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€
{P/Ka) sin Ka + cos Ka

Figure 5 Plot of the function (P/Ka} sin Ka -+ cos Ka, for P = 37/2. The allowed values of the
energy e are given by those ranges of Ka = (2me/fi*)a for which the function lies between *1.
For other values of the energy there are no traveling wave or Bloch-like solutions to the wave
equation, so that forbidden gaps in the energy spectrum are formed.
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Figure 6 Plot of energy vs. wavenumber for the 0 "
Kronig-Penney potential, with P = 37/2. Notice = 2 S i
the energy gaps atka = =, 2w, 37 . . .. ka

values of k. Let U(x) denote the potential energy of an electron in a linear lattice
of lattice constant a. We know that the potential energy is invariant under a crys-
tal lattice translation: U(x) = U(x + a). A function invariant under a crystal lattice
translation may be expanded as a Fourier series in the reciprocal lattice vectors
(. We write the Fourier series for the potential energy as

Ulx) = g Ug e . (22)

The values of the coefficients Uy, for actual crystal potentials tend to decrease

rapidly with increasing magnitude of G. For a bare coulomb potential Ug
decreases as 1/G*.
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We want the potential energy U(x) to be a real function:

Ulx) = D, Ugle'™ + ™) =2 Uy cos Gx . (23)
é>0 o=
For convenience we have assumed that the crystal is symmetric about x = 0
and that Uy = 0.
The wave equation of an electron in the crystal is #y = ey, where ¥ is the
hamiltonian and € is the energy eigenvalue. The solutions ¢ are called eigen-
functions or orbitals or Bloch functions. Explicitly, the wave equation is

(2_1%792 + U(x)) ) = (g}n—pz +3 e efcx) Yl =eplx) . (24)

Equation (24) is written in the one-electron approximation in which the
orbital ¥(x) describes the motion of one electron in the potential of the ion
cores and in the average potential of the other conduction electrons.

The wavetunction ¢(x) may be expressed as a Fourier series summed over
all values of the wavevector permitted by the boundary conditions, so that

= ; Clk) e™ | (25)

where k is real. (We could equally well write the index k as a subscript on C, as
inCp.)

The set of values of k has the form 2mn/L, because these values satisfy
periodic boundary conditions over length L. Here n is any integer, positive or
negative. We do not assume, nor is it generally true, that y(x) itself is periodic
in the fundamental lattice translation a. The translational properties of {x)
are determined by the Bloch theorem (7).

Not all wavevectors of the set 2mn/L enter the Fourier expansion of
any one Bloch function. If one particular wavevector k is contained in a i,
then all other wavevectors in the Fourier expansion of this ¢ will have the
form k + G, where G is any reciprocal lattice vector. We prove this result in
{29) below.

We can label a wavefunction ¢ that contains a component k as iy or,
equally well, as ¢y, ¢, because if k enters the Fourier expansion then k + G
may enter. The wavevectors k + G running over G are a restricted subset of
the set 2rn/L, as shown in Fig. 7.

We shall usually choose as a label for the Bloch function that k which lies
within the first Brillouin zone. When other conventions are used, we shall say
so. This situation differs from the phonon problem for a monatomic lattice
where there are no components of the ion motion outside the first zone. The
electron problem is like the x-ray diffraction problem because like the electron
wavefunction the electromagnetic field exists everywhere within the crystal
and not only at the ions.
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Figure 7 The lower points represent values of the wavevector k = 27n/L allowed by the periodic
boundary condition on the wavefunction over a ring of circumference L composed of 20 primitive
cells. The allowed values continue to ®£o. The upper points represent the first few wavevectors
which may enter into the Fourier expansion of a wavefunction y{x), starting from a particular
wavevector k = ko = —8(2%/L). The shortest reciprocal lattice vector is 2u/a = 20(2w/L).

To solve the wave equation, substitute (23) in (24) to obtain a set of linear
algebraic equations for the Fourier coefficients. The kinetic energy term is

_l__ 2 _L — d g _ ﬁ d2i,b' ﬁ 2 :kx,
o) =gk () gt = LY H s g o

and the potential energy term is

(5 060 ot = 3.3 vt
@ c 7
The wave equation is obtained as the sum:

2
Lol LIS *’“+ UeClk ’“"G)x-e Clk (26)
O

k

Each Fourier component must have the same coefficient on both sides of the
equation. Thus we have the central equation

(A, — €)Clk) + ; UCk—G)=0 . (27)

with the notation
Ay = BA%Yom (28)

Equation (27) is a useful form of the wave equation in a periodic lattice,
although unfamiliar because a set of algebraic equations has taken the place of
the usual differential equation {24). The set appears unpleasant and formida-
ble because there are, in principle, an infinite number of C(k — G) to be de-
termined. In practice a small number will often suffice, perhaps two or four. It
takes some experience to appreciate the practical advantages of the algebraic
approach.
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Restatement of the Bloch Theorem

Once we determine the C’s from (27), the wavefunction (25) is given as

dnlx) = %C(k —G) e o, (29)

which may be rearranged as
‘#k(@ = (; C(k _ G) eiCI) eikx — eikxuk(x) ’

with the definition
lx) =D Clk — G) g™,
C

Because u(x) is a Fourier series over the reciprocal lattice vectors, it is in-
variant under a crystal lattice translation 7', so that u,(x) = ui{x + T). We verify
this directly by evaluating u,{x + T):

wlx + Ty =3 Clk — Gle S0+ = ¢ 7Oy Gk — G) e™ '] = e Tiylx) .

Because exp(—iGT) = 1 by (2.17), it follows that u(x + T) = w(x), thereby
establishing the periodicity of u;. This is an alternate and exact proof of the
Bloch theorem and is valid even when the i, are degenerate.

Crystal Momentum of an Electron

What is the significance of the wavevector k used to label the Bloch func-
tion? It has several properties:

 Under a crystal lattice translation which carries r tor + T we have
Gl + T) = e T Tulr + ) = ¢ Tih(r) (30)

because u(r + T) = uy{r). Thus exp{ik + T) is the phase factor by which a
Bloch function is multiplied when we make a crystal lattice translation T.

o If the lattice potential vanishes, the central equation (27) reduces to
(A — €)C(k) = 0, so that all C(k — G) are zero except C(k), and thus 2, (r)
is constant. We have i (r) = &*™, just as for a free electron. (This assumes
we have had the foresight to pick the “right” k as the label. For many pur-
poses other choices of k, differing by a reciprocal lattice vector, will be more
convenient.)

* The quantity k enters in the conservation laws that govern collision processes
in crystals. (The conservation laws are really selection rules for transitions.)
Thus #k is called the crystal momentum of an electron. If an electron k
absorbs in a collision a phonon of wavevector g, the selection rule is k + q =
k' + G. In this process the electron is scattered from a state k to a state k',
with G a reciprocal lattice vector. Any arbitrariness in labeling the Bloch func-
tions can be absorbed in the G without changing the physics of the process.
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Solution of the Central Equation
The central equation (27),

MN—eCk)+ D ULk -G =0, (31)
G

represents a set of simultaneous linear equations that connect the coefficients
C(k — G) for all reciprocal lattice vectors G. It is a set because there are as
many equations as there are coefficients C. These equations are consistent if
the determinant of the coefficients vanishes.

Let us write out the equations for an explicit problem. We let ¢ denote the
shortest G. We suppose that the potential energy U(x) contains only a single
Fourier component U, = U_,, denoted by U. Then a block of the determinant
of the coefficients is given by:

Aj—gg € U 0 0 0
U Ap.g— € U 0 0
0 U AL — € U 0 . (32)
0 0 U Apvg —€ U
0 0 0 U Apsgg— €

To see this, write out five successive equations of the set (31). The determi-
nant in principle is infinite in extent, but it will often be sufficient to set equal
to zero the portion we have shown.

At a given k, each root € or €, lies on a different energy band, except in
case of coincidence. The solution of the determinant (32) gives a set of energy
eigenvalues €,, where n is an index for ordering the energies and k is the
wavevector that labels C,.

Most often k will be taken in the first zone, to reduce possible confusion in
the labeling. If we chose a k different from the original by some reciprocal
lattice vector, we would have obtained the same set of equations in a different
order—but having the same energy spectrum.

Kronig-Penney Model in Reciprocal Space

As an example of the use of the central equation (31) for a problem that is
exactly solvable, we use the Kronig-Penney model of a periodic delta-function
potential:

Ulx) = 22 Ug cos Gx = Aa Y, 8(x —-sa) , (33)

G>0 s

where A is a constant and « the lattice spacing. The sum is over all integers s
between 0 and 1/a. The boundary conditions are periodic over a ring of unit
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length, which means over 1/a atoms. Thus the Fourier coefficients of the
potential are

1 1
Up= f dx Ulx) cos Gx = Aaz f dx 8{x — sa) cos Gx
0 s 0

=AaY, cos Gsa=A .

All Ug are equal for the delta-function potential.
We write the central equation with k as the Bloch index. Thus (31)
becomes

(A — €)Ck) + AD, Clk — 2mn/a) =0 | (35)
where A, = #%%2m and the sum is over all integers n. We want to solve (35)
for e(k).
We define

flk) = Clk — 2mn/a) , (36)

f

so that {35) becomes

_ emAR)f (k)
Cle) = K — (2me/h®) (37)

Because the sum (36) is over all coefficients C, we have, for any n,
flk)y= flk — 2mn/a) . (38)
This relation lets us write

Clk — 2mn/a) = — (2mAMRE Flk)[(k — 2mn/a)* — 2me/B?)] ! . (39)

We sum both sides over all n to obtain, using {36) and cancelling f(k) from
both sides,

(BY2mA) = =2 [(k — 2mn/a)® — (2me/h®)] ™1 . (40)

f

The sum can be carried out with the help of the standard relation
}’\A P 1
e CEEE?C_ZHTT'FI ' (41)

n

After trigonometric manipulations in which we use relations for the difference
of two cotangents and the product of two sines, the sum in (40) becomes

a® sin Ka
42
4Kalcos ka — cos Ka) (42)

where we write K = 2me/A% as in (13).
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The final result for (40) is

(mAa®/2h%)(Ka) " sin Ka + cos Kg = cos ka | (43)

which agrees with the Kronig-Penney result (21b) with P written for mAa*/242,

Empty Lattice Approximation

Actual band structures are usually exhibited as plots of energy versus
wavevector in the first Brillouin zone. When wavevectors happen to be given
outside the first zone, they are carried back into the first zone by subtracting a
suitable reciprocal lattice vector. Such a translation can always be found. The
operation is helpful in visualization.

When band energies are approximated fairly well by free electron ener-
gies & = 71°k%/2m, it is advisable to start a caleulation by carrying the free elec-
tron energies back into the first zone. The procedure is simple enough once
one gets the hang of it. We look for a G such that a k’ in the first zone satisfies

K+G=k,

where k is unrestricted and is the true free electron wavevector in the empty
lattice. (Once the plane wave is modulated by the lattice, there is no single
“true” wavevector for the state W)

If we drop the prime on k' as unnecessary baggage, the free electron
energy can always be written as

elkyk, k) = (A2m)(k + G)?
= (F2m)[(k, + G )2 + k, + G+ (k, + G .

with k in the first zone and G allowed to run over the appropriate reciprocal
lattice points.

We consider as an example the low-lying free electron bands of & simple
cubic lattice. Suppose we want to exhibit the energy as a function of k in the
[100] direction. For convenience, choose units such that #2/9, = 1. We show
several low-lying bands in this empty lattice approximation with their energies
€(000) at k = 0 and €(k,00) along the k, axis in the first zone:

1 000 0 K2

2,3 100,100 (27/a)? (sz * 29/a)?
4,5.6,7 010,010,001,001 (27/a)? K2 + (2m/q)?
8,9,10,11 110,101,110,101 2(2m/a)* (ky + 2m/a)® + (2m/a)?
12,13,14,15 110,101,110,701 2{27/a)? (ky ~ 2m/a)® + (20r/a)?

16,17,18,19 011,071,011,011 2(2m/a)? k2 + 2(27/a)
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Figure 8 Low-lying free electron energy bands
of the empty s¢ lattice, as transformed to the first
Brillouin zone and plotted vs. {k.00). The free
electron energy is A%k + G)*2m, where the G’s
are given in the second column of the table. The
beld curves are in the first Brillouin zone, with
—mla = k, = a/a. Energy bands drawn in this
way are said to be in the reduced zone scheme.

f

5]

fa)
a3

These free electron bands are plotted in Fig. 8. It is a good exercise to plot the
same bands for k parallel to the [111] direction of wavevector space.

Approximate Solution Near a Zone Boundary

We suppose that the Fourier components Ug; of the potential energy are
small in comparison with the kinetic energy of a free electron at the zone
boundary. We first consider a wavevector exactly at the zone boundary at 3G,
that is, at 7/a. Here

=GGE;, k-GP=(CG-GP=(GG)?,

so that at the zone boundary the kinetic energy of the two component waves
k= +3G are equal.

I CLEG)is an important coefficient in the orbital (29) at the zone boundary,
then C(—1G) is also an important coefficient. This result also follows from the
discussion of (5). We retain only those equations in the central equation that
contain both coefficients C(;G) and C(—3G), and neglect all other coefficients.
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One equation of (31) becomes, with k = 3G and A = A2(3G)%2m,
(A~ €)CEG)+UC(—G) =0 . (44)
Another equation of (31) becomes, with k = 3G,
A—€eC(—3G)+ UCEG) =0 . (45)

These two equations have nontrivial solutions for the two coefficients if
the energy e satisfies

U A—E€

whence

ﬁﬂ
A —el=02, em/\iU=%—(§G)2iU. (47)
The energy has two roots, one lower than the free electron kinetic energy by
U, and one higher by U. Thus the potential energy 2U cos Gx has created an
energy gap 2U at the zone boundary.
The ratio of the C’s may be found from either (44) or (45):

C(_%G) _€A

==+ 48
cge) U .

where the last step uses (47). Thus the Fourier expansion of ¢(x) at the zone
boundary has the two solutions

Prix) = exp(iGx/2) *+ exp(—iGx/2) .

These orbitals are identical to (5).

One solution gives the wavefunction at the bottom of the energy gap; the
other gives the wavefunction at the top of the gap. Which solution has the
lower energy depends on the sign of U.

We now solve for orbitals with wavevector k near the zone boundary ;G.
We use the same two-component approximation, now with a wavefunction of
the form

Plx) = Clk) e® + Clk — G) g*Cr | (49)
As directed by the central equation (31), we solve the pair of equations

Ay — €)Ck) + UCk — C) =0 ;
(Arc —€)Ctk — C) + UCK) =0 |
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with Ay defined as %%*2m. These equations have a solution if the energy e
satisfies

/\k — € U =0
U Ag—e ’
whence €2 — €A + A + Ao A — U2 = 0.
The energy has two roots:
=5 oot A 2 [F Ao~ A+ U2, (50)

and each root describes an energy band, plotted in Fig. 9. It is convenient to
expand the energy in terms of a quantity K {the mark over the K is called a
tilde), which measures the difference K =% — 3G in wavevector between k
and the zone boundary:

ex = (BRm)EGE +K?) = [AA(BPRY2m) + U]
= (BY2m)(LG? + K% = ULl + 2WUBRKY2m)] ,  (51)

in the region A2GK/2m < |U|. Here A = (#%2m)(; G)* as before.
Writing the two zone boundary roots of {47) as €(=), we may write (51) as

)= PR . 24
ex(X)=elx) + om (1_ 7 (52)
Zone boundary
2._'
€
1_
O ,
; 1.5

Figure 9 Solutions of (50} in the periodic zone scheme, in the region near a boundary of the first
Brillouin zone. The units are such that U = —0.45, G = 2, and A%m = 1. The free electron curve is
drawn for comparison. The energy gap at the zone boundary is 0.90. The value of U has deliberately
been chosen large for this illustration, too large for the two-term approximation to be accurate.
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k e
Figure 10 Ratio of the coefficients in ¢z} = C(k) explikz) + Clk — G) explik ~ G)x] as calcu-

lated near the boundary of the first Brillouin zone. One compenent dominates as we move away
from the boundary.

These are the roots for the energy when the wavevector is very close to the
zone boundary at 3G. Note the quadratic dependence of the energy on the
wavevector K. For U negative, the solution e(—) corresponds to the upper of
the two bands, and e€(+) to the lower of the two bands. The two (s are plotted
in Fig. 10.

NUMBER OF ORBITALS IN A BAND

Consider a linear crystal constructed of an even number N of primitive
cells of lattice constant a. In order to count states we apply periodic boundary
conditions to the wavefunctions over the length of the crystal. The allowed
values of the electron wavevector k in the first Brillouin zone are given by (2):

2ar A Nor

o= - + =5 . -+ =, PR
kO,mL, R (53)
We cut the series off at No/L = w/a, for this is the zone boundary. The point
—N7/L. = —/a is not to be counted as an independent peint because it is

connected by a reciprocal lattice vector with #/a. The total number of points is
exactly N, the number of primitive cells.

Each primitive cell contributes exactly one independent value of k
to each energy band. This result carries over into three dimensions. With
account taken of the two independent orientations of the electron spin, there
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are 2N independent orbitals in each energy band. If there is a single
atom of valence, one in each primitive cell, the band can be half filled with
electrons. If each atom contributes two valence electrons to the band, the
pand can be exactly filled. If there are two atoms of valence, one in each prim-
itive cell, the band can also be exactly filled.

Metals and Insulators

If the valence electrons exactly fill one or more bands, leaving others
empty, the crystal will be an insulator. An external electric field will not cause
current flow in an insulator. {We suppose that the electric field is not strong
enough to disrupt the electronic structure.) Provided that a filled band is sepa-
rated by an energy gap from the next higher band, there is no continuous way
to change the total momentum of the electrons if every accessible state is
filled. Nothing changes when the field is applied. This is quite unlike the situa-
tion for free electrons for which k increases uniformly in a field (Chapter 6).

A crystal can be an insulator only if the number of valence electrons in a
primitive cell of the crystal is an even integer. (An exception must be made for
electrons in tightly bound inner shells which cannot be treated by band
theory.) If a crystal has an even number of valence electrons per primitive cell,
it is necessary to consider whether or not the bands overlap in energy. If the
bands overlap in energy, then instead of one filled band giving an insulator, we
can have two partly filled bands giving a metal (Fig. 11).

The alkali metals and the noble metals have one valence electron per
primitive cell, so that they have to be metals. The alkaline earth metals have
two valence electrons per primitive cell; they could be insulators, but the
bands overlap in energy to give metals, but not very good metals. Diamond,
silicon, and germanium each have two atoms of valence four, so that there are

Energy
Energy

0 ™
ke ——> a

{a) (b) (¢)

Figure 11 Occupied states and band structures giving {a) an insulator, (b) a metal or a semimetal
because of band overlap, and (c) a metal because of electron concentration. In (b) the overlap
need not occur along the same directions in the Brillouin zone. If the overlap is small, with rela-
tively few states involved, we speak of a semimetal.
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eight valence electrons per primitive cell; the bands do not overlap, and the
pure crystals are insulators at absolute zero.

SUMMARY

» The solutions of the wave equation in a periodic lattice are of the
Bloch form yq(r) = e uy(r), where u,(r) is invariant under a crystal lattice
translation.

e There are regions of energy for which no Bloch function solutions of the
wave equation exist (see Problem 5). These energies form forbidden regions
in which the wavefunctions are damped in space and the values of the k’s are
complex, as pictured in Fig. 12. The existence of forbidden regions of energy
is prerequisite to the existence of insulators.

. Enérgy bands may often be‘approximated by one or two plane waves: for
example, ¥, (x) = Clke™™ + Clk — G)e"* % near the zone boundary at =G.

e The number of orbitals in a band is 2N, where N is the number of primitive
cells in the specimen.

Problems

Yo

. Square lattice, free electron energies. (a) Show for a simple square lattice {two
dimensions) that the kinetic energy of a free electron at a corner of the first zone is
higher than that of an electron at midpoint of a side face of the zone by a factor of 2.
(b) What is the corresponding factor for a simple cubic lattice (three dimensions)?
(c) What bearing might the result of (b) have on the conductivity of divalent metals?

2. Free electron energies in reduced zone. Consider the free electron energy bands
of an fec crystal lattice in the approximation of an empty lattice, but in the reduced
zone scheme in which all k’ s are transformed to lie in the first Brillouin zone. Plot
roughly in the [111] direction the energies of all bands up to six times the lowest

~ band energy at the zone boundary at k = (27/a)(3, 1, 3). Let this be the unit of en-
ergy. This problem shows why band edges need not necessarily be at the zone cen-
ter. Several of the degeneracies (band crossings) will be removed when account is

taken of the crystal potential.

@Kronig—Penneg model. {a) For the delta-function potential and with P<l, find at
k = 0 the energy of the lowest energy band. (b} For the same problem find the band
gap atk = m/a.

4. Potential energy in the diamond structure. (a) Show that for the diamond struc-
ture the Fourier component Ug of the crystal potential seen by an electron is equal
to zero for G = 2A, where A is a basis vector in the reciprocal lattice referred to the
conventional cubic cell. {b) Show that in the usual first-order approximation to
the solutions of the wave equation in a periodic lattice the energy gap vanishes at
the zone boundary plane normal to the end of the vector A.
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Figure 12 In the energy gap there exist solutions of the wave equation for complex values of the
wavevector, At the boundary of the first zone the real part of the wavevector is ;G. The imaginary
part of k in the gap is plotted in the approximation of two plane waves, for U = 0.01 #*G*2m. In an
infinite unbounded crystal the wavevector must be real, or else the amplitude will increase with-
out limit. But on a surface or at a junction there can exist solutions with complex wavevector.

*5. Complex wavevectors in the energy gap. Find an expression for the imaginary
part of the wavevector in the energy gap at the boundary of the first Brillouin zone,
in the approximation that led to Eq. (46). Give the result for the Im(k) at the center
of the energy gap. The result for small Im{k) is

(Fom)Im(k)]? = 2mUYAGE .

The form as blotted in Fig. 12 is of importance in the theory of Zener tunneling
from one band to another in the presence of a strong electric field.

6. Square lattice. Consider a square lattice in two dimensions with the crystal potential

Ulxy) = —4U cos(2mx/a) cos(2my/a) .

Apply the central equation to find approximately the energy gap at the corner
point (7/a, 7/a) of the Brillouin zone. It will suffice to solve a 2 X 2 determinantal

equation.

"This problem is somewhat difficult.
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