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A simple, rigorous geometrical representation for the Schrodinger equation is developed to describe 
the behavior of an ensemble of two quantum-level, noninteracting systems which are under the influence 
of a perturbation. In this case the Schrodinger equation may be written, after a suitable transformation, 
in the form of the real three-dimensional vector equation dr/dt=(')Xr, where the components of the vector 
r uniquely determine if; of a given system and the components of (,) represent the perturbation. When 
magnetic interaction with a spin! system is under consideration, "r" space reduces to physical space. By 
analogy the techniques developed for analyzing the magnetic resonance precession model can be adapted 
for use in any two-level problems. The quantum-mechanical behavior of the state of a system under various 
different conditions is easily visualized by simply observing how r varies under the action of different types 
of (,). Such a picture can be used to advantage in analyzing various MASER-type devices such as amplifiers 
and oscillators. In the two illustrative examples given (the beam-type MASER and radiation damping) 
the application of the picture in determining the effect of the perturbing field on the molecules is shown 
and its interpretation for use in the complex Maxwell's equations to determine the reaction of the molecules 
back on the field is given. 

INTRODUCTION 

ELECTROMAGNETIC resonances in matter have 
become a fundamental tool for studying the 

structure of matter. Moreover, recently it has become of 
interest to use such resonances for radio and micro
wave frequency circuit components, such as highly 
stable oscillators, high Q filters, isolators, and amplifiers. 
The purpose of this paper will be to aid in the under
standing of simple resonances and especially in the 
conception and design of microwave "atomic" devices 
(now commonly called MASER-type devices) which 
involve these simple resonances. In this paper we 
propose to do the following things: (a) To develop a 
simple but rigorous and complete geometrical picture of 
the SchrOdinger equation describing the resonance 
behavior of a quantum system when only a pair of 
energy levels is involved (the resulting picture has the 
same form as the well-known three-dimensional classical 
precession of a gyro magnet in a magnetic field); (b) 
To note further properties of the model which permit 
its direct interpretation in terms of the physical 
properties which couple the quantum systems to the 
electromagnetic fields, and to state these explicitly for 
dipole transitions; (c) To illustrate the use of the picture 
by solving the particular cases of the beam MASER 
oscillator characteristics and "radiation damping." 

Although the approach does not obtain results 
inaccessible to straight-forward calculation, the simplic
ity of the pictorial representation enables one to gain 
physical insight and to obtain results quickly which 
display the main features of interest. 

FORMULATION 

We will be concerned with an ensemble of spacially 
non-overlapping systems, e.g., molecules in a molecular 
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beam, such that the wave function for anyone individ
ual system may be written 

(1) 

during some time of interest. 1/10 and I/Ib are the two 
eigenstates of interest of the Hamiltonian for the 
single system corresponding to the energies W +~o/2 
and W -~o/2 respectively. W is the mean energy of 
the two levels determined by velocities and internal 
interactions which remain unchanged. W will be 
taken as the zero of energy for each system. Wo is the 
resonant angular frequency associated with a transition 
between the two levels and is always taken positive. 

It is usual to solve Schrodinger's equation with some 
perturbation V for the complex coefficients aCt) and 
bet), and from them calculate the physical properties 
of the system. However, the mathematics is not always 
transparent and the complex coefficients do not give 
directly the values of real physical observables. Neither 
is it sufficient to know only the real magnitudes of a 
and b, i.e" the level populations and transition proba
bilities, when coherent processes are involved. We 
propose instead to take advantage of the fact that the 
phase of I/ICt) has no influence so that only three real 
numbers are needed to completely specify I/I(t). We 
construct three real functions (Tl,T2,T8) of a and b which 
have direct physical meaning and which define a 3-
vector r whose time dependance is easily pictured: 

Tl=ab*+ba* 

T2=i(ab*-ba*) (2) 

fa=aa*-bb*. 

(*) always indicates complex conjugate. The time 
dependence of r can be obtained from Schrodinger's 
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equation which gives 

iMa/dt=a[(ltwo/2)+ Vaa]+bVab (3) 

and similar equations for db/dt, da*/dt, db*/dt. The 
subscripts on V indicate the usual matrix elements. 
Vaa= Vbb=O for most all cases of interest, and when
ever these can be neglected compared to ltwo/2, V need 
be neither small nor of short duration for the results 
to be exact. Using Eqs. (3) to find the differential 
equation for r gives 

dr/dt= wXr (4) 

where w is also a three vector in "r" space defined by 
the three real components: 

WI == (Vab+ V ba)/h 

(5) 

The X symbol has the usual vector product meaning. 
It is easily shown that the remaining real combination 
aa*+bb* is just equal to the length of the r vector, 
(r12+r22+ra2)i, and is constant in time. It equals one 
when Y; is normalized to unity. The motion described by 
Eq. (4) is of the form for the precession of a classical 
gyromagnet in a magnetic field. Therefore, it is not sur
prising that in the case of transitions between the two 
magnetic levels of a spin! particle, this mathematical r 
space will be equivalent to physical space with r1, r2, ra 
proportional to the expectation values of jJ.z, jJ.y, jJ.., and 
WI, W2, Ws proportional to the components of the mag
netic field Hz, H y , H. respectively. Although in general 
the formalism does not represent physical space, by 
analogy any transitions under the stated conditions may 
be thought of rigorously in terms of the well-known 
classical vector model for spin precession. The extensive 
and explicit use of rotating coordinate procedures, as 
was introduced by Bloch, Ramsey, Rabi, and Schwin
gerl .2 for special kinds of magnetic transitions, is 
generally applicable in dealing with the r space. 

INTERPRETATION 

The effect of the presence of the quantum systems on 
the surrounding electromagnetic field is observed in 
many resonance experiments or devices, so it [is of 
interest to deduce such quantities as the energy given 
up by the systems and effective polarization densities 
which, in general, are not linear in the impressed fields. 
The internal energy, or expectation value of the 
unperturbed Hamiltonian H at any time t is 

(H)= f y;*Hy;d(Vol) = (aa*-bb*)hwo/2=rahwo/2 (6) 

or just ra in units of ltwo/2. The total internal energy in 
any ensemble of these systems is of course the sum of 

1 Rabi, Ramsey, and Schwinger, Revs. Modern Phys. 26, 167 
(1954). 

t R. K. Wangsness, Am. J. Phys. 24, 60 (1956). 

the ra values (in units of ltwo/2) in the region, or the 
projection on the 3 axis of the vector sum R= Liri 
over the region. In fact, any operator x such as the 
dipole moment operator, which is separable in the 
systems, has an expectation value of the form 

xabL;(ai)*bi+XbaL;(bi)*a i 

+XaaL;Cai)*ai+xbbL;(bi)*bi 

and is therefore a linear combination of the rl's, r2's, 
and rs's, or R l , R2 , and Ra; it is proportional to a projec
tion of R on some axis, plus perhaps a constant. 

It remains to determine the proper projections for 
particular cases and also state explicitly the values 
of (,). Since all common microwave transitions such as 
hyperfine structure, spin flip, molecular rotational and 
inversion transitions are dipole transitions, we will 
examine only these cases. 

For electric dipole Am= 0 transitions, 

(7) 

where jJ.ab is the matrix element between the two states 
for the component of the dipole moment along the 
electric field E. If jJ.ab is made real by proper choice of 
the phases of Y;a and Y;b, then 

Wl= (Vab+ Vba)/h= - (2jJ.ab/h)E 

(8) 

Ws=Wo 

WI is the electric field strength in units of - 2jJ.ab/h. 
In this case 

(f..L)= a*bf..Lab+b*af..Lba= rl/J.ab. (9) 

This means that the component of the polarization 
density P along the electric field will equal the average 
projection of r on the 1 axis in some small region of 
space and given in units of Pf..Lab where p is the particle 
density. 

In the case of magnetic dipole Am= 0 transitions, 
the same formulas apply substituting H for E and the 
appropriate magnetic dipole for jJ.. 

In the case of electric or magnetic Am = ± 1 dipole 
transitions, considering Ex and E1/ to be the relevant 
spacial components of either the electric or magnetic 
fields, 

(10) 

where E±=Ex±iE1/ and f..L±=jJ.x±if..Ly. By the well
known properties of the f..L± operators: 

Vab= - (1/2)f..Lab+(Ex-iE1/) 

V ba= - (1/2)f..Lba-(Ex+iE1/)' (11) 

Choosing the phases of Y;a and Y;b such that f..Lab+ is 
a real number "I, then jJ.ab+=f..Lba- by their definitions, 
and: 

Wl= - (')'/h)Ex 

W2= - ('Y/h)E1/; 
(12) 

thus (,) behaves in the 1-2 plane exactly as does E in 
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the x-y plane of space. By noting that (J.I.-+-)='Ya*b 
and Vr)='Yb*a, we find: 

(J.I..,)= ('Y/2)rI 

(p.1I) = ("1/2)1"2. 
(13) 

If there exists a component J.I.. such that -J.l..E.=H, 
then it can be seen that the mathematical "r" space 
reduces to physical space, as in the case of free spin 
! Zeeman transitions. By similar procedures any kind 
of perturbation affecting only two levels can be thought 
of in terms of the familiar behavior of vectors rotating 
in space, according to dr/dt=wXr. 

SAMPLE APPLICATIONS 

Beam Type Maser Oscillator3 

To examine how this viewpoint leads to the solution 
of a particular problem, we first solve the effect of a 
given field on the particles involved; secondly, we 
formulate the classical field equations in a way suitable 
to the experimental situation, and using the proper 
projections of the r vector we find the conditions which 
satisfy both Schrodinger's and Maxwell's equations 
simultaneously. Consider a beam of molecules which 
enters a microwave cavity which is near resonance with 
a t.m= 0 transition of the molecule. The molecules have 
been prepared so that only those in the higher energy 
state enter the cavity. Assume for simplicity that the 
cavity mode shape is such that the molecules see an 
oscillatory field of constant amplitude and phase as 
they pass through the cavity. The oscillating WI can 
?e separated into two counter-rotating components 
III the 1-2 plane. For coherent perturbations such as 
this it is convenient to transform to a coordinate 
frame in which the appropriate component of WI 

appears stationary, and neglect the other counter
rotating component. The rotating axes will be des
ignated the I, II, and III axes. We take the I axis in 
the plane of the stationary driving torque which now 
has the following constant components (see Fig. 1): 

wr= 1/21wII 
WlI=O 

W[[[=Wo-W. 

W is the frequency of the perturbation. The molecules 
enter the cavity with r= III and at a time t later the 
components rr and rII can be seen by inspection of 
Fig. 1 to be 

(14) 
WI 

rII= -- sin (Q/). 
Q 

Q is the magnitude [wi+ (wO-W)2J! of the driving 
torque as seen in the rotating frame. 

3 Gordon, Zeiger, and Townes, Phys. Rev. 95, 282 (1954). 

m 

FIG. 1. MASER oscillator diagram in rotating coordinates. 

To reduce these results to the stationary frame we 
choose the time reference such that WI = 2wr cos(wt). 
Then 1'1 = ret) cos[wt+0 (t) ] where ret) is the magnitude 
of the projection of r on the 1-2 plane and 
oCt) = tan-lrlI/rr. If we use complex quantities to 
~epres~nt time dependence at frequency w, it is evident 
If WI. IS represen~ed by Wr then rl is represented by 
(rr+zru). Assumlllg all the molecules to have a velocity 
v then the complex polarization density P at a distance 
z ~long the cavity is the simple expression PJ.l.ab(rr+irIl) 
wl~h t= z/v.4 In a thin beam, Pz , the polarization per 
umt length of beam is (n/v)J.l.ab X (rr+irIl). n is number 
per ~econd entering the cavity. Thus in practice one 
obtallls the quantities of interest directly from the 
rotating frame. 

The electric field configuration in the cavity has been 
assumed to be the normal configuration Ee(x,y,z) of 
the nondegenerate mode employed, where the normal
izatio~ is taken such that flEe 12d'O = 1. I Ee I at the 
beam IS taken to be the constant l'O-i. 'V is the volume 
of the cavity. 1 is. a form factor which would be unity 
were the field umform throughout. The electric field 
may be written E= Ee(x,y,z)8(t)eiwt where 8 is a real 
amplitude, constant in the steady state of oscillation. 
Then Maxwell's equations in complex form give 

- w2
[ 8Ee+ (4?r Ee/ I Ee I )PJ 

+i(wwe/Q)Ee8+we2Ee8=O. (15) 

We i~ the resonant frequ~ncy of the cavity and Q is 
qualIty factor of the caVIty. Integrating Eq. (15) by 
. Ee over the cavity volume gives in the case of a very 
thin beam 

-W2
[ 8+ (4?rn/v )J.l.ab i L 

j'O-l(rr+irIl)dz] 

+i(WWc/Q) 8+we28= O. (16) 

Performing the indicated integration, the imaginary 

4 J. Helmer, M. L. Report No. 311, Signal Corps Contract 
DA 36-039 SC-71178, Stanford University. 
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FIG. 2. Representation of "radiation damping" with the complex 
Maxwell's equations represented on the I-II plane by the 
hollow arrows. R= 1;iri , a=jV-i }1ab, P=total polarization (or 
magnetization) . 

part of Eq. (16) gives 

n 

nth 2(I-cosO) 
(17) 

nth=ft'Ov2/27rj2J.1.ab2L2Q and is the threshold number 
per second required to sustain oscillation. fJ is the total 
angle f!.L/v through which each r precesses about the 
effective w. 

Equation (17) gives fJ if n is known and thus the 
spread of frequencies at which oscillation is possible. 
To determine the magnitude of the electric field and 
the frequency of oscillation for a particular We and 
cavity Q consider the real part of Eq. (16). 

This may be written as 

wo-W Q I-cosO 
~---

W-W e 7rQB 1- (sinfJ)/fJ WO-W e 

(18) 

where QB= 27rwoL/v~wo/ llw is a parameter describing 
the natural molecular resonance line width llw. Given 
the amount of cavity detuning WO-We and fJ from 
Eq. (17), Eq. (18) enables one to determine the 
frequency of oscillation wand then Sf'oooIW[ by using the 
definition of fJ. These are essentially the results of 
Shimoda, Wang, and Townes,· though it appears here 
that no restrictions need be placed on W to obtain them. 
Since the parameters fJ, W-Wo, W[f'oooIS, the internal 
energy, and the dipole moment all appear as geometrical 
quantities in Fig. 1, it is easy to visualize the effects of 
changing any of them. Also, it is often easy to visualize, 
if not to solve, more complicated situations such as 
those which involve cavities with nonuniform modes, 
multiple cavities, or externally-driven cavities. 

To picture the coupling of the molecules, governed 
by the Schrodinger equation, with the field, governed 
by Maxwell's equation, it is useful to think of the 
I - II plane in the rotating frame as a complex plane 
representing relative time phase, with the II axis as 
the imaginary axis. Then the complex Maxwell's 

5 Shimoda, Wang, and Townes, Phys. Rev. 102, 1308 (1956). 

equation (16) can be drawn on the I-II plane and the 
way in which the various quantities must vary to 
balance the equation to zero (or to some other driving 
force, if present) can be visualized. Imagining the 
I - II plane as complex is especially useful when the 
r vectors throughout the cavity have all seen the same 
perturbation for the same length of time, in which 
case the integrals are just proportional at any time to 
the resultant R= Liri which behaves in the "ame 
manner as the individual r's, i.e., dR/ dt= wX R. This 
picture is easily applied to the phenomenon of "radiation 
damping."6.7 

Radiation Damping 

To examine the spontaneous behavior of an ensemble 
of dipoles in an arbitrary state (represented by an R) 
and enclosed in some small portion of a microwave 
cavity, we may write Maxwell's equations for the 
cavity as before. When the ensemble is in thermal 
equilibrium R is - IIlRo where Ro is given by the 
number present and Boltzmann statistics. Assume 
some other R state is obtained (this can be done by 
applying a short intense r f pulse at WO) and R is left 
tipped at an angle ¢o to the III axis in the II, III plane 
(RI=O). Further, we assume that the cavity is tuned 
to the molecular resonant frequency so that in this 
case w=wo=we• Figure 2 is drawn for this case. RlJ 
= Ro sin¢ is proportional to S from balancing imaginary 
parts of the diagram. We must now assume that 
dS!dt«(wo/Q)S and (wr/wo)2«1 as we have replaced 
time derivatives by i<.J only. Now dR/dt= wXR means 
that d¢/ dtf'ooolsin¢. So the radiation damping obeys 
d¢/ dtf'ooolsin¢ at resonance. The solution with constants 
eval ua ted is 

tan (¢/2) = tan(¢o/2)e tIT• (19) 

T=1Jfz/47r-J2J.Lab2QRo for llm=O transitions, and T='Oft/ 
7r f'Y2 RoQ for the case of llm± 1 transi tions in a linearly 
polarized field (that is, a nondegenerate cavity mode). 
The case of a circularly polarized field involving two 
cavity modes and f1m= ± 1 transitions is more compli
cated and involves both (J.Lx) and (;;.,,) each coupling to 
a separate mode. 

In conclusion, we wish to emphasize the usefulness 
of the geometrical model in visualizing and solving 
problems involving transitions between two levels. 
However, the way in which this model would be 
interpreted and used in a given situation depends upon 
the particular problem as is indicated by the two 
examples given. This technique of using the geometrical 
model does not make solutions of problems possible 
which were not solvable previously. However, even in 
many of these insoluble cases one can gain considerable 
insight into the behavior of the processes being investi
gated by observing how the parameters in the model 
vary. 

eN. Bloembergen and R. V. Pound, Phys. Rev. 95, 8 (1954). 
7 R. H. Dicke, Phys. Rev. 93, 99 (1954). 


