“‘modetn formalism of Quantum Optics.

{b

sgally circular, it is well worth playing with. (Photo courtesy PSSC Coflege
ysics, D, C. Heath & Co., 1968.)

]ufion of variational principles brings us back to Optics via the

figure 4.37 Reflection off an ellipsoidal surface. Observe the reflec-
tion of waves using a frying pan filled with water. Even though these are
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Fermat’s Principle is not so much a computational device
as it is a concise way of thinking about the propagation of
light. It is a statement about the grand scheme of things with-
out any concern for the contributing mechanisms, and as such
it will yield insights under a myriad of circumstances.

4.6 The Electromagnetic Approach

Thus far, we have studied reflection and refraction from the
perspectives of Scattering Theory, the Theorem of Malus and
Dupin, and Fermat’s Principle. Yet another and even more
powerful approach is provided by Electromagnetic Theory.
Unlike the previous techniques, which say nothing about the
incident, reflected, and transmitted radiant flux densities (i.e.,
I, 1., I, respectively), Electromagnetic Theory treats these
within the framework of a far more complete description.

4.6.1 Waves at an Interface

Suppose that the incident monochromatic Hightwave is planar,
so that it has the form

E =T, exp Lk, - ¥ — wi)] 41D
or, more simply,
E =%, cosk F— o0 (4.12)

Assume that ﬁm is constant in time; that is, the wave is linear-
ly or plane polarized. We'l find in Chapter 8 that any form of
light can be represented by two orthogonal linearly polarized
waves, so that this doesn’t actually represent a restriction.
Note that just as the origin in time, # = 0, is arbitrary, so too is
the origin O in space, where ¥ = 0. Thus, making no assump-
tions about their directions, frequencies, wavelengths, phases,
or amplitudes, we can write the reflected and transmitted
waves as

E, = By, cos (K,-F — et + &) (4.13)
and E, = Eo cos (K,-T ~ ot + &) (4.14)

Here &, and &, are phase constants relative to Ei and are intro-
duced because the position of the origin is not unique. Figure
4.38 depicts the waves in the vicinity of the planar interface
between two homogeneous lossless dielectric media of indices
n; and n,.
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Figure 4.38 Plange waves incident on the boundary between two
homegeneous, isotropic, fossiess dielectric media.

The laws of Electromagnetic Theory (Section 3.1) lead to
certain requirements that must be met by the fields, and they
are referred to as the boundary conditions. Specifically, one of
these is that the component of the electric field E that is tan-
gent to the interface must be continuwous across it (the same is
true for H) In other words, the total tangential component of
E on one side of the surface must equal that on the other
(Problem 4.37). Thus, since (1, is the unit vector normal to the
interface, regardless of the direction of the electric field with-
in the wavefront, the cross-product of it with 0, will be per-
pendicular to G, and therefore tangent to the interface. Hence

G, xE +G,xE, =0, xE, (4.15)
or
~ = -
U, X Eg, cos (K; - fw;f)
- ~ — -
+ i, X Eg.cos (k-7 — o, + &)
~ = = -
=0, x Eycos (k,-F ~ w;it+ & (4.16)

This relationship must obtain at any instant in time and at any
point on the interface (y = b). Consequently, EI, Er, and E,
must have precisely the same functional dependence on the
variables ¢ and », which means that

- -
(ki T — @f)lyp = KT — o0t + 5],

= Ko ¥~ wf +e)lmp (417

Wiih this as the case, the cosines in Eq. (4.16) cancel, leaving
an expression independent of £ and r, as indeed it must be.

Tnasmuch as this has to be true for all values of timme, the coef-
ficients of ¢ must be equal, to wit

w; = W, = o, (4.18)

Recall that the electrons within the media are undergoing (lin-
ear) forced vibrations at the frequency of the incident wave,
Whatever light is scattered has that same frequency. Further-
niore,

e Doy = K F + ) mp= &oF + &)y (419)
wherein ¥ terminates on the interface. The values of ¢, and g,
correspond to a given position of @, and thus they allow the
relation to be valid regardless of that location. (For example,
the origin mlght be chosen such that ¥ was perpendicular to k
but not to k or k, ) From the first two terms we obtain

[0 ~ k) -Flyp = (4.20)
Recalling Eq. (2.43), this expression sitply says that the end-
point of ¥ sweeps out a plane ¢ (wh;ch is of course the interface)
perpendicular to the vector (k r) To phrase it slightly dif-
ferently, (k -k .} is parallel to G,,. Notice, however, that since
the incident and reflected waves are in the same medium, k; =
k.. From the fact that (ﬁ ,) has no component in the plane
of the interface, that is, {0, X (k i) = (), we conclude that

k;sin 8; = k.sin 8,
Hence we have the Law of Reflection; that is,
91' = Qr

Eurglermore, since (l_(:» — K,.) is parallel to (i, all three vectors,
k;, k,, and (,, are in the same plane, the plane-of-incidence.
Again, from Eq. (4.19)

[k — &) -Flep = & (4.21)

ané therefore {k f) is also normal to the interface. Thus E,‘;
k,, kr, and u are all coplanar. As before, the tangential com-

ponents of k and k must be equal, and consequently
k; sin 6, = k, sin 0O, {(4.22)

But because w; = w,, we can multiply both sides by ¢/w; |
to get

nysin 8; = n, sin 8,

which is Snell’s Law. Finally, if we had chosen the origin O ©




pe in the interface, it is evident from Eqs. (4.20) and {4.21)
“'tnat £ and & would both have been zero. That arrangement,
--though not as instructive, is certainly simpler, and we’Tl use it
. from here on.

4.6.2 The Fresnel Equations

‘We have }ust found the I‘B]dt}OHShlp that exists among the
phases ofE (7, 1), E (F, ¢}, and E,{r t} at the boundary ThE:IG
is stil] an interdependence shared by the amplitudes E01= E()ra
and Eq,, which can now be evaluated. To that end, suppose
that a plane monochromatic wave is incident on the planar sar-
face separating two isotropic mcdm Whatever the polarization
of the wave, we shall resolve ifs E- and B-fields into compo-
nents parallel and perpendicular to the plane-of-incidence and
treat these constituents separately.

Case ] I E perpendicular to the plane-of-incidence, Assume
that E is perpendicufar to the plane-of-incidence and that Bis
parallel to it (Fig, 4.39), Recall that E = ©B, so that

—=

X E = vB (4.23)

-

and kE=0 (4.24)
(i.e., E ﬁ, and the unit prepagation vector I’% form a right-hand-
ed system). Again, making use of the continuity of the tangen-
tial components of the E-field, we have at the boundary at any
time and any point

Ep + Ey, = By (4.25)
where the cosines cancel. Realize that the field vectors as

shown really ought to be envisioned at y = 0 (i.e., at the sur-
face), from which they have been displaced for the sake of

plane-of-incidence by symmeiry, we are guessing that they
poinf outward at the interface when ﬁ does. The directions of
the B-fields then follow from Eg. (4.23).

We will need to invoke another of the boundary conditions
in order to get one more equation. The presence of material
substances that become electrically polarized by the wave has
a definite effect on the f1eld configuration, Thus, although the
tangential component of E is continuous across the boundary,
_1is normal component is not. Instead, the normal component of
the product €K is the same on either side of the interface. Sim-

clarity. Note too that although E and K E must be normal to the -
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Figure 4.39 An incoming wave whose Efisld is normal to the plane-of-
incidence.

ilarly, the normal componeit of B is conlinuous, as is the tan-
gential component of u ~'B. Here the magnetic effect of the
two media appears via their permeabilities u; and pu,. This
boundary condition will be the simplest to use, particularly ag
applied to reflection from the surface of a conductor.* Thus the
continuity of the tangential component of B/u requires that

B; B, B
~—"cos 8 + —"cos 8, = — — cos 6,

oy i ez
where the left and right sides are the tota? magnitudes of ﬁ/ o
parallel to the interface in the incident and transmitting media,
respectively. The positive direction is that of increasing x, o

(4.26)

*In keeping with our intent to use only the E- and §-ﬁeld5, at least in the
early part_)of this exposition, we have avoided the usual statements in
terms of H, where

H=u"1B [A1.14]




114 Chapter 4 The Propagation of Light

that the scalar components of ﬁi and ﬁ, appear with minus
signs. From Eq. (4.23) we have

B; = Eifv; (4.27)
B.=E.[v, (4.28)
and ‘B, = E,Ju, (4.29)
Since v, = v, and 8 = 6,, Eq. (4.26) can be written as
1 3
— (E, — E,ycos 0; = —— E, cos 6, {4.30}

Pt MUy

Making use of Egs. (4.12), (4.13), and (4.14) and remember-
ing that the cosines therein equat one another at y = 0, we
obtain

Sl (Ey: — Eo,) cos 0; = il Eq, cos 6, (4.31)
Mo 23
Combined with Eq. (4.25), this yields
i cos 6 — T cos 6,
Eo» i r
EOi L - _n‘_l COS§ 91' + _}k COS 9; (4.32)
Hi oy
i
2 ——= C08§ 8.'?
Eo\ | - i
and (Em)l o 6, 2 cos 8, (4.33)
i 223

The L subscript seves as a reminder that we are dealing with
the case in which E is perpendicula to the plane-of-incidence.
These two expressions, which are completely general state-
ments applying to any linear, isotropic, homogeneous medid,
are two of the Fresnel Equations. Most often one deals with
dielectrics for which p; = p, = pg; consequently, the common
form of these equations is simply

(4.34)

and

(4.35)

Here r; denotes the amplitude reflection coefficient, and 7,
is the amplitede transmission coefficient.

Case 2: E parallel to the plane-of-incidence. A similar pair
of equations can be derived when the incoming E-field lies in

the plane-of-incidence, as shown in Fig. 4.40. Continuity of
the tangential components of E on either side of the boundary
jeads to

Eg; cos 6, — Ey,cos 6, = Eg, cos 8, (4.36)
In much the same way as befare, continuity of the tangential =
components of B/ v yields

1 1 1

— o Bop = Ly
MOy

(437

Using the fact that p; = p, and 6. = 0,, we can combine these
formulas to obtain two more of the Fresnel Equations.

H n;
L cos B; — —cos 6

(4.38)

_[Eor\ _ "
" By , cosf —~ cos 6,
Hey Mt

Figure 4.40 Anincoming wave whose E-field is in the plane-ofinck
dence.




H;
2 -t Ccos 91'

— I”’Ot . — ]
L= (Em)” - cos 6, + B cos 6 (4.39)
i Ly

: “When both media formin g the interface are dielectrics that are
essentially “nonmagnetic” (p. 66), the amplitude coefficients
- "become

(4.40)

- and (4.41)

'.One further notational simplification can be made using
Snell’s Law, whereupon the Fresnel Equations for dielectric
* media become (Problem 4.39)

_ Siﬂ (915 - 9,}

42

sin (6; + &) 42)
tan (6; — 6,)

= 4.43

R (4.43)

f = 2 sin 6, cos 6, 4.44)

sin {8, + 6)

2 sin €, cos 8,
= 4 4.45
" (6, + 0) cos (6, — 6 (343

A note of caution must be introduced here. Bear in mind
that the directions (or more precisely, the phases) of the fields
in Figs. 4.39 and 4.40 were selected rather arbitrarily. For
example, in Fig. 4.39 we could have assumed that E,. pointed
inward, whereupon ﬁ, would have had to be reversed as well.
Had we done that, the sign of », would have turned out to be
positive, leaving the other amplitude coefficients umchanged.
The signs appearing in Eqgs. (4.42) through (4.45), which are
positive except for the first, correspond to the particular set of
field directions selected. The minus sign in Eq. (4.42), as we
will see, just means that we didn’t guess correetly concerning
E, in Fig. 4.39. Nonetheless, be aware that the Hterature is not
standardized, and all possible sign variations have been
labeled the Fresnel Eguations. To avoid confusion they must
be related to the specific field dirvections from which they were
~ derived.
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4.6.3 Interpretation of the Fresnel Equations

This section examines the physical implications of the Tresnel
Equations. In particular, we arc interested in determining the
fractional amplitudes and flux densitics that are reflected and
refracted. In addition we shall be concerned with any possible
phase shifts that might be incurred in the process.

Amplitude Coefficients

Let’s briefly examine the forn of the amplitude coefficients
over the entire range of 8; values. At nearly normal incidence
(8; = 0) the tangents in Eq. (4.43} are essentially equai to
sintes, in which case

; i Gi - 9: :
[r”]Bf:O = {“J'_LJBl-:o = [MJ
8;=0

sin (&; + 6,)

We will come back to the physical significance of the minus
sign presently, After expanding the sines and using Snell’s
Law, this expression becomes

1, €08 8; — n; cos G (4.46)
7y €08 8+ mycos 6, f, o )
r

[f'u]é?,-:o = [NFL]Q,--:D = [

which follows as well from Egs. (4.34) and (4.40). In the lim-
it, as B goes to 0, cos 6; and cos 6, both approach one, and con-
sequently

n, —

[Fidosmo = [—rilg,m0 = (447

n+ on;

This equality of the reflection coefficients arises because the
plane-of-incidence is no longer specified when 6, = 0, T hus,
for example, at an air (n; = 1) glass (n, = 1.5) intexface at
nearly normal incidence, the ampiitude reflection coefficients
equal *.0.2, (See Problem 4.45.)

When n, > n; it follows from Snell’s Law that 6, > 6, and
7y is negative for all values of 0; (Fig. 4.41). In contrast, Eq.
(4.43) telis us that #, starts out positive at @; = 0 and decreases
gradually until it equals zero when (8, + 8) = 90°, since there
tan 77/2 is infinite. The particular value of the incident angle
for which this occurs is denoted by 8, and referred to as the
polarization angle (see Section 8.6.1). Notice that r;, — 0 at
8, just when the phase shifts 180°, That means we won't see
the E-field do any {lipping when € approaches 0, from either
side. As 8, increases beyond 8,, r; becomes progressively
more negalive, reaching — 1.0 at 90°,

If you place a single sheet of glass, a microscope slide, on
this page and look straight down into it (0; = 0), the region
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beneath the glass will seem decidedly grayer than the rest of
the paper, because the slide will reflect at both its interfaces,
and the light reaching and returning from the paper will be
diminished appreciably. Now hold the slide near your eye and
again view the page through it as you tilt it, increasing 6, The
amount of light reflected will increase, and it will become
more difficult {o see the page through the glass, When 8, =
90° the slide will look like a perfect mirror as the reflection
coefficients (Fig. 4.41) go to ~1.0. Even a rather poor surface
{(see photo), such as the cover of this book, will be mirrorlike
at glancing incidence. Hold the book horizontally at the level
of the middle of your eye and face a bright light; you will see
the source reflected rather nicely in the cover, This suggests
that even X-rays could be mirror-reflected at glancing inci-
denee (p. 242), and modern X-ray telescopes are based on that
very fact.

At normal incidence Egs. (4.35) and (4.41) lead rather
straightforwardly to

) ‘ 2n;
ltule,=0 = [t1]a,—0 = - (4.48)
1y + 1,
It will be shown in Problem 4.50 that the expression
b+ {—rp=1 (4.49)

"0’_ T T T i T T

0.5— —

Amplitude coefficients
o

—0.5

- 56.3°
e 1) S —T— S R S J__LJ—_L
0 30 60

3; (degrees}

90

Figure 4.41 The amplitude coefficients of refiection and transmission
as a function of incident angle. These correspond to external reflection
==y at an air-glass interface (ny; = 1.5),

At near-glancing incidence the
walls and floor are mirrorlike—
this despife the fact that the
surfaces are rather poor reflec-
tors at & = 0° (Photo by E.H.)

holds for all 8, whereas

ty+r =1 {4.50)
is true only at normal incidence.

The foregoing discussion, for the most part, was restricted
to the case of external reflection (i.e., n, > n,). The opposite
situation of internal reflection, in which the incident medium
is the more dense {n; > n,), is of interest as well. In that
instance 0, > 6, and r,, as described by Eq. (4.42), will :
always be positive. Figure 4.42 shows that 7, increases from
its initial value [Eq. (4.47)] at 6; = 0, reaching +1 at whatis -
called the critical angle, 6. Specifically, 0, is the special val- .
ue of the incident angle (p. 122) for which 8, = /2. Like-
wise, r starts off negatively [Eq. (4.47)] at 6, = 0 and
thereafter increases, reaching +1 at 6, = @, as is evident from *
the Fresnel Equation (4.40). Again, ry passes through zero at =
the polarization angle 6}, It is left for Problem 4.66 to show |
that the polarization angles 6} and 8, for internal and external
reflection at the interface between the same media are simply !
the complements of each other. We will return to internal -
reflection in Section 4.7, where it will be shown that r poand ry o
are complex quantities for &, > 6.,

Phase Shifts

It should be evident from £q. (4.42) that r,_is negative regard-
IiSS of 6; when i, > n,. Yet we saw earlier that had we chosen
iE,jLinFig. 437 to be in the opposite dircction, the first Fres-
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Figure 4.42  The amplitude coefficients of reflection as a function of
incident angle. These correspond to internal reflection ny < n, at an
air-glass interface (n; = 1/1.5).

nel Equation {4.42) would have changed signs, causiag r, to
become a positive qucmtul The szgn of 1| is associated with
the relative directions of [Ey;], and [EO,] 1- Bear in mind that a
reversal of [Eor] ) is tanfamount to introducing a phasc shift,
Ago ;. 0f 7 radians into {E,] 1. Hence at the boundary [E 1 and
[Er] 1+ will be antiparalle! and therefore 7 out-of-phase with
each other, as indicated by the negative value of r,. When we
- consider components normat to the plane-of-incidence, there
is no confusion as to whether two fields are in-phase or 7 radi-
ans out-of-phase: if parallel, they're in-phase; if antiparallel,
they’re 77 out-of-phase. In summary, then, the component of
the electric field normal to the plane-of-incidence undergoes
a phase shift of 7 radians upon reflection when the incident
medinm has a lower index than the transmitting medium.
Similarly, ¢, and ¢, are always positive and Ag = 0, Further-
More, when n; > n, no phase shift in the normal component
results on reflection, that is, Ap, = 0 so long as s 6, < 0.

Tinngs are a bit less obvious when we deal with iEJu, [E T
and [E,]i It now becoines necessary to define more explicitly
what is meant by in-phase, since the field vectors are coplanar
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but generally not colinear, The field directions were chosen in
Figs. 4.39 and 4.40 such that if you looked down any one of
the propagaticn vectors toward the direction from which the
light was coming, E B and K would appear to have the same
relative orientation whether the ray was incident, reflected, or
transmitted. We can use this as the required condition for two
E-fields to be in-phase. Equivalently, but more simply, two
Jfields in the incident plane are in-phase if their y- compo-
nents are parallel and are out-of- phase. 1f the components
are anfiparallel, Nolice that when two E-fields are out-of-
phase so0 too are their associated B-fields and vice versa, With
this definition we need only look at the vectors normal to the
plane-of-incidence, whether they be E or B, to determine the
relative phase of the accompanying fields in the mmdem
pl:me Thus i in Fig. 4 43a k; and E, are in-phase, as are B and
B,, whereas E and E are out-of- phase, along with B and B
Szmﬂarly, in Fig. 4.43b E,, E, , and E are in-phase, as are B
B, , and B

Now, the amplitude reflection cocfficient for the parailel
component is given by

n; cos G,
", cos B; + n;cos 6,

_ n,cos 6 —

which is positive (Ag, = 0} as long as

n,co8 8~ mco8 6, >0
that is, if

sin & cos 6; — cos B, 8in &, > 0

(b y

Figure 4.43 Field crientations and phase shifts.
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Figure 4.44 Phase shifts for the parallel and perpendicutar compo-
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nents of the Efield corresponding to internal and external reflection.

or equivalently

sin {6 — 8)ycos (6, + 6) >0 4.5

This will be the case for n; < n, if

6+ 8)< m/2 (4.52)

and for n; > n, when

(B +8)y>m/2 {4.53)
Thus when »; << #,, [E_?Or]ﬂ and {ﬁm}" will be in-phase (Ag, =
0} until &; = 6, and out-of-phase by = radians thereafter. The
transition is not actually discontinuous, since [l_fg,.]“ goes to
zero at &,. In contrast, for internal reflection ry is negative until
0}, which means that Ag, = . From 0}, to 0., r, is positive
and Agy = 0. Beyond 8,, r, becomes complex, and Ag, grad-
ually increases to  at 8; = 90°.

Figuare 4.44, which summarizes these conclusions, will be
of continued use to us. The actual functional form of A, and
A, for internal reflection in the region where 0; > 8. can be
found in the Literature,” but the curves depicted here will suf-
fice for our purposes. Figure 4.44e is a plot of the relative
phase shift between the parallel and perpendicular compo-
nents, that is, Ap, — Agp,. It is included here because it will be
useful later on (e.g., when we consider polarization effects).
Finally, many of the essential features of this discussion are
illustrated in Figs. 4.45 and 4.46. The amplitudes of the
reflected vectors are in accord with those of Figs. 4.41 and
4.42 (for an air—glass interface), and the phase shifts agree
with those of Fig, 4.44,

Many of these conclusions can be verified with the simplest
experimental equipment, namely, two linear polarizers, a
piece of glass, and a small source, such as a flashlight or high- .
intensity lamp. By placing one polarizer in front of the source
(at 45° to the plane-of-incidence), you can easily duplicate the
conditions of Fig. 4.45. For example, when 6; = 8, (Fig. -
4.45D) no light will pass through the second polarizer if its
transmission axis is parallel to the plane-of-incidence. In com- .}
parison, at near-glancing incidence the reflected beam will -
vanish when the axes of the two polarizers are almost normal e
tc each other. ¥

*Born and Wolf, Principles of Optics, p. 49,
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Figure 4.46 The reflected Eield at various angies concomitant with
internal reflection.

Reflectance and Transmittance

Consider a circular beam of light incident on a surface, as
shown in Fig. 4.47, such that there is an illuminated spot of
area A. Recall that the power per unit _area crossing a surface in
vacuum whose normal is paraflel to S the Poynting vector, is
given by

=

S =c%,ExB [3.40]
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Figure 4.45 The reflected
E-field at various angles con-
comitant with external reflec-
ticn.

Furthermore, the radiant {Tux density (W/m?} or irradiance is

J=(§) = 5'39 b [3.44]

This is the > Average energy per umt time crogsmg a unit area
normal to § (in isotropic media S is parallel to k) In the case
at hand (Fig. 4.47), let I, 7,., and I, be the incident, reflected,
and transmitted flux densities, respectively. The cross-section-
al areas of the incident, reflected, and transmitted beams are,
respectively, A cos 6, A cos 8,, and A cos @, Accordingly, the
incident power is [;A cos 6; this is the energy per unit time
flowing in the incident beam, and it’s therefore the power

Figure 4.47 Reflection and transmission of an incident beam,
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arriving cn the surface over A, Similarly, 7, A cos 8, is the
power in the reflected beam, and 7,4 cos 8, is the power being
transmitted through A, We define the reflectance R to be the
ratio of the reflected power (or flux) to the incident power:

LAcosO 1
R=lrAcos 0 1

= 54
]iA COos 91- ]i (45 )

In the same way, the transmittance 7'is defined as the ratio of
the transmitted to the incident flux and is given by

I cos 6,

T
I;cos 6,

i

(4.55)

The quotient 7,/1; equals (v,€,E 5/ 2)/ (ve,E2/ 2), and since
the incident and reflected waves are in the same medium, v, =
U;, €, = €, and

2
Ey,
R= (EZ") =2 (4.56)
In like fashion (assuming w; = u, = py),
o €08 6, (ﬁ)z - (&M)tz 4.57)
n; €08 8, \ Fy, ; Cos 8,

where use was made of the fact that Ho€, = 1/v? and Mol =
./ c. Notice that at normal incidence, which is a situation of
great practical interest, 8, = 8, = 0, and the transmittance [Fq.
(4.53)], like the reflectance [Eq. (4.54)], is then simply the
ratio of the appropriate irradiances. Since R = r? we need not
worry about the sign of ¢ in any particelar formulation, and
that makes reflectance a convenient notion. Observe that in
Eq. (4.57) T is not simply equal to % for two reasons. First,
the ratio of the indices of refraction must be there, since the
‘Speeds at which energy is transported into and out of the inter-
face are different, in other words, [ « u, from Eq. (3.47). Sec-
ond, the cross-sectional areas of the incident and refracted
beams are different. The energy flow per unit area is affected
accordingly, and that manifests itself in the presence of the
ratio of the cosine lerms,

Let’s now write an expression representing the conserva-
tion of energy for the configuration depicted in Fig. 4.47. Tn
other words, the total energy flowing into area A per unit time
must equal the energy flowing ovtward from it per unit time:

1;A cos 6; = I.A cos 6, + LA cos 6, (4.58)

When both sides are multiplied by ¢, this expression becomes

nEg; cos 6 = mEZ_ cos 6 + mE§, cos 8,

2 2

£, mcos 8\ [ Ep, ¥

= =] + 2222 4.59) -

or (EOE) (I’t,‘ COs QE) (E()j) ( ) o
But this is simply ' :
R+T=1 (4.60)

where there was no absorption. Tt is convenient to use the o
component forms, that is,

@.61)

Ry =r?
Ry=r 4.62) |
T, = (_M £os 9‘)@ (4.63) .
i1; COS 9,‘ :
0
and 7, = (i’cﬁé)z? @64
n; cos G

which are illustrated in Fig. 4.48. Furthermore, it can be
shown (Problem 4.71) that '

Ry +1T=1 (4.65) .

and Ro+T, =1 (4.66)
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=
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Figure 4.48 Reflectance and transmitiance versus incident angle,
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Thus 4% of the light incident normally on an air-glass (n, =
1.5) interface will be reflected back. whether internally, n; >
ny, or externally, r; << n, (Problem 4.72). This will be of con-
cemn to anyone who is working with a complicated lens 8YS§-
tem, which might have 10 or 20 such air-glass boundaries,
Indeed, if you look perpendicularly into a stack of about 50
microscope slides (cover-glass sliders are much thinner and
casier to handie in large quantities), most of the fight will be
reflected. The stack will look very much like & mirror (see
photo). Roll up a thin sheet of clear plastic into a multiturned
" Looking down info a puddle {that's melting snow on the right) we see a cylinder and it too will look like shiny metal. The many inter-
" Yeflection of the surrounding trees. At normal incidence water reflects faces produce a large number of closely spaced specular
" about 2% of the light. As the viewing angle increases here its about 40° reflections that send much of the light back into the incident
. that percentage increases. (Pholo by F.H.) medium, more or less, as if it had undergone a single frequen-
' cy-independent reflection. A smooth gray-metal surface does
pretty much the same thing —it has a large, frequency-inde-
pendent specular reflectance—and looks shiny (that’s what
“shiny™ is}. If the reflection is diffuse, the surface will appear
gray or even white if the reflectance is large enough.
Figure 4.49 is a plot of the reflectance at a single interface,
assumkng normal incidence for various transmitting media in
A Y air. Figure 4.50 depicts the corresponding dependence of the
R=R/ =R, = - (4.67)  transmittance at normal incidence on the number of interfaces
‘ ! and the index of the medium. Of course, this is why you can't
see through a roll of “clear” smooth-surfaced plastic tape, and
(4.68)  it’s also why the many elements in a periscope must be coated
with antireffection films (Section 9.9.2).

When 6, = 0, the incident plane becomes undefined, and
any distinction between the paraltel and perpendicuiar compo-
nents of R and 7' vanishes. In this case Egs. (4.61) through
(4.64), along with (4.47) and (4.48), lead to

Ay
(n, + n)’?

and Tr=T,=T,

At near normal incidence about 4% of the fight is reflected back off

each airglass interface, Here because it's a lot brighter outside than Near normal reflection off a stack of microscope slides.
instde the building, you have no trouble seeing the photographer, You can see the image of the camera that took the picture.
{Photo by EH.} Photo by EH.)
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Figure 4.49 Reflectance at normal incidence in air {mn: = 1.0) at a sin-
gle interface.
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Figure 4.50 Transmittance through a number of surfaces in air
{n; = 1.0Y at normal incidence.

4.7 Total Internal Reflection

In the previous section it was evident that something rather
interesting was happening in the case of internal reflection
(r; > n;) when €; was equal to or greater than &, the so-called
critical angle. Let’s now return to that situation for a closer
look. Suppose that we have a source embedded in an opticaily
dense medium, and we aflow 8; to increase gradually, as indi-
cated in Iig. 4.51. We know from the preceding section (Fig.
442} that ryy and | increase with increasing @, and therefore %

and 7, both decrease. Morcover €, > 8, since

. e,
sin 6; = —sin 6,

By

and n; > n,, in which case n; << 1. Thus as 6; becomes larger,
the transmitted ray gradually approaches tangeney with the
boundary, and as it does more and more of the available ener-
gy appears in the reflected beam. Finally, when 6, = 90°,
sin 6, = 1 and

sin 8, = a, (4.69)
As noted earlier, the critical angle is that special value of 8;
for which 0, = 90°. The larger n; is, the smaller #,, is, and the
smailer &, is. For incident angles greater than or equal to 8, all
the incoming energy is reflected back into the incident medi-
um in the process known as total internal reflection (see pho-
10).

It should be stressed that the transition from the conditions
depicted in Fig. 4.51a to those of 4.514d takes place without
any discontinuities. As 6; becomes larger, the reflected beam
grows stronger and stronger while the transmitted beam grows
weaker, until the latter vanishes and the former carries off all
the energy at 6. = 6. It’s an easy matter to observe the
diminution of the transmitted beam as 6, is made larger. Just
place a glass microscope slide on a printed page, this time
blocking out any specularly reflecied light. At 6; = 0, 6, is
roughly zero, and the page as seen through the glass is fairly
bright and clear. But if you move your head, allowing 8, (the
angle at which you view the interface) to increase, the region

Notice that you can't see the
two front flames through the
water along a bright horizontal
band. That's due to total inter-
nal reflection. Look at the hot
tom of a drinking galss
through its side. Now add a
few inches of water, What
happens? (Photo by £.H.)
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Figure 4.51 Internal reflection and the critical
angle. (Photo courtesy of Educational Service, Inc.)

of the printed page covered by the glass will appear darker and et face of either of the prisms in Fig. 4.52 will bave a 6, >
darker, indicating that T has indeed been markedly reduced.  42° and therefore be internally reflected. This is a convenient

“The critical angle for our air-glass interface is roughly 42°  way to reflect nearly 100% of the incident light withouat hav-
(see Table 4.2). Consequently, a ray incident normally on the  ing to worry about the deterioration that can occur with metal-

lic surfaces (see photo).
— Another useful way to view the situation is via Fig. 4.53,
TABLE 4.2 Critical Angles which shows a simplified representation of scattering off
P 6 n o g atormic oscillators. We know that the net effect of the presence
« g4 i c T . . . -
(degrees)  (radians) (degrees)  (radians) of the homogeneous isotropic media is to alter the speed of the
) ' : o e light from ¢ to v; and v,, respectively (p. 92). The resuitant
502849  0.8776 1.50 418103 07297 . . i - .
wave is the superposition of these wavelets propagating at the
49.7612 0.8685 1.51 414718 0.7238 . . . ) o
appropriate speeds. In Fig. 4.53a an jncident wave results in
49,2509 0.8596 1.52 41.1395 0.7i80 . . : . o
45,7535 0.8500 53 408132 07123 the emission of wavelets successively from scattering centers
48'2682 0.8424 1'54 40'4927 (}.7{)67 A and B. These overlap to form the transmitted wave. The
’ ' ) ' ’ reflected wave, which comes back down into the incident
47,7946 0.8342 1.55 40,1778 0.7012 . _ . R L
73321 0826 1 s 308683 06058 medivm as usual (6, = 6,), is not shown. In a fime ¢ the nci-
46-8803 0.8182 1'57 39.5642 0'6905 dent front travels a distance v;# = CB, while the transmisted
46.438 ; {)18105 1“58 39.265 5 0'685% front moves a distance v,z = AD > CB. Since one wave
’ ’ : o e moves from A to E in the same time that the other moves from
46.0070 0.8030 1.59 389713 0.6802
455847 0.7956 1.60 386822 06751
451715 0.7884 1.61 38.3978 0.6702 ®) N
447670 0.7813 1.62 381181 0.6653 B /
44,3709 0.rid4 1.63 37.8428 0.6605
43.9830 0.7676 1.64 375719 0.6558
43,6028 0.76140 1.65 373052 0.6511
43,2302 0.7545 1.66 37.0427 0.6465
42.8649 0,748 1 1.67 36,7842 0.6420
42.5066 0.7419 1.68 36.5290 0.6376
42,1552 0.7357 1.69 362789 (.6332

Figure 4.52 Total internal reflection.
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C'to B, and since they have the same frequency and period,
they must change phase by the same amount in the process.
Thus the disturbance at point £ must be in-phase with that at
point B; both of these points must be on the same transmitted
wavefront (remember Section 4.4.2.

c)

Figure 4.53  An examination of the transmitted wave in the process of
total internal reflection from a scattering perspective, Here we keep 8
and ry constant and in successive parts of the diagram decrease i,
thereby increasing v, The reflected wave (8, = 8 is not drawn.

The prism behaves like a mirror
and reflects a portion of the pen -
cit {revarsing the lettering on it),
The operating process is total
internal reflection, ®hoto by E.H)

It can be seen that the greater @, is in comparison o u;, the -
more tilied the transmitted front will be (i.e., the larger @, will
be). That much is depicted in Fig. 4.535, where n,; has been ©
taken to be smaller by assuming n, to be smaller. The resuit is
a higher speed v, increasing A} and causing a greater trans
mission angle. In Fig. 4.53¢ a special case is reached: AD =
AB = v, and the wavelets will overlap in-phase only along
the line of the interface, 6, = 90°. From triangle ABC, sin 6, =
vit/vt = n,/n;, which is Eq. (4.69). For the two given media
(i.e., for the particular value of ny), the direction in which the)
scattered wavelets will add constructively in the transmitting
medium is along the interface, The resultin ¢ disturbance (6,
90°) is known as a surface wave.

4.7.1 The Evanescent Wave

Because the frequency of X-rays is hi gher than the resonanc
frequencies of the atoms of the medium, Eq. (3.70) suggests
and experiments corfirm, that the index of refraction of X
rays is less than 1.0. Thus the wave veiocity of X-rays (i.e., th
phase speed) in matter exceeds its value {c¢) in vacuum
altbough it usually does so by less than 1 partin 10 0G0, evell
in the densest solids. When X-rays traveling in air enter ¢
dense material like glass, the beam bends ever so slightly
away from the normal rather than toward it. With the above
discussion of total internal reflection in mind, we shotﬂd_
expect that X-rays will be totally “externally” reflected
when, for example, n, = n,,, and n, = Flarasse Lhis 18 the way
it’s often spoken of in the literature, but that’s a misnomer
since for X-rays n,;, > flgiess 8nd therefore n; > p, (GVE}?_
though glass is physically more dense than air), the process 8



éctua]fy still internal veflection. In any event, because 1, is Iess
*|han, but very nearly equai to, 1 the index ratio n,; = 1 and 8,
= 90°.

9111 1923 A. H. Compton reasoned that even though X-rays
“incident on & sample at ordinary angles are not specularly
reflected, they should be totally “externally” reflected at
glancing incidence. He shined 0.128 nm X-rays on a glass
late and got a critical angle of about 10 minutes of arc
(0.167°) measured with respect to the surface. That yielded an
index of refraction for glass that differed from [ by —~4.2 X
107°.

Wwe’'ll come back to some important practical applications
of both total internal and total “external” reflection later on
(p- 200).

If we assume in the case of total internal reflection that
there is no transmitied wave, it becomes impossible to satisfy
the boundary conditions using only the incident and reflected
waves—things are not at all as simple as they might seem.
Furthermore, we can reformulate Eqs. (4.34) and (4.40) (Prob-
lem 4.75) such that

cos & — (n% — sin® 172
r= ( —— )1/2 (4.70)
cos 6; + (n;; — sin” 6))

nicos 6, — (n% — sin® 6)**
nZcos 8, + (ns — sin® )12

and Py = (4.713

Since sin 8, = n,; when 8; > 6., sin 6, > n,, and both r; and
become complex quantities. Despite this (Problem 4.76), . o
= ryi = 1and R = 1, which means that I, = I; and I, = G,
Thus, although there must be a transmitted wave, it cannot, on
the average, carry energy across the boundary. We shall not
perform the complete and rather lengthy computation needed
te derive expressions for all the reflected and transmitted
fields, but we can get an appreciation of what’s happening in
the following way. The wavefunction for the {ransmitted elec-

tric field is
E, = By, exp i(f{:-F — wt)
where i;, oF = kx + kyy

-
there being no z-component of k. But

k. =k, sin 6,
and ke, =k, cos 6

4,7 Total internal Reflection 123

as seen in Fig. 4.54. Once again using Snell’s Law,

? 1/2
k, cos 6, = ik,(l - mza‘)

i

(472

or, since we are concerned with the case where sin 6, > n,;,

) 1/2
‘ L. sin? 8 )
by, = ik, 5 — — 1 = *if
I
k.
and k, = —sin 6
i
Hence

I—Er — E)O!e TRy ithey Sin Oy rgi—wt) (4.73)
Neglecting the positive exponential, which is physically
untenable, we have a wave whose amplitude drops off expo-
nentially as it penetrates the less dense medium. The distus-
bance advances in the x-direction as a surface or evanescent
wave, Notice that the wavefronis or surfaces of constant phase
(parallel to the yz-plane) are perpendicular to the surfaces of
constant amplitude (parallel to the xz-planc), and as such the
wave is inhomogeneous (p. 26), Tts amplitude decays rapidly
in the y-direction, becoming negligible at a distance into the
second medivm of only 2 few wavelengths.

If you are still concerned about the conservation of energy,
a more extensive treatment would have shown that energy
actually circulates back and forth across the interface, result-
ing on the average in a zero net flow through the boundary into
the sccond medium. Yet one puzzling point remains, inas-

Figure 4.54

Propagation vectors for internal reflection.



126 Chapter 4 The Propagation of Light

mucl: as there is still a bit of energy to be accounted for, name-
ly, that associated with the evanescent wave that moves along
the boundary in the plane-of-incidence. Since this energy
could not have penetrated into the less dense medium under
the present circumstances (so long as 6, = 8.), we must look
clsewhere for its source. Under actual experimental conditions
the incident beam would have a finite cross section and there-
fore would cbviously differ from a true plane wave. This devi-
ation gives rise (via diffraction) to a slight transmission of
energy across the interface, which is manifested in the evanes-
cent wave.

Incidentally, it is clear from (¢) and (d) in Tig. 4.44 that the
incident and reflected waves {except at 0; = 90%) do not differ
in phase by 7 and cannot therefore cancel each other. It fol-
lows from the continuity of the tangential component of E
that there must be an oscillatory field in the less dense medi-
um, with a component paralle! to the interface having a fre-
quency o (i.e., the evanescent wave).

The exponential decay of the surface wave, or boundary
wave, as it is also sometimes called, has been confirmed
experimentaily at optical frequencies.*

Imagine that a beam of light raveling within a block of
glass is internally reflected at a boundary. Presumably, if you
pressed ancther piece of glass against the first, the air—glass
interface could be made to vanish, and the beam would then
propagate onward undisturbed. Furthermore, you might
expect this transition from total to no reflection to oecur grad-
ually as the air film thinned out. In much the same way, if you
hold a drinking glass or a prism, you can see the ridges of your
fingerprints in a region that, because of tota! internal reflec-
tion, is otheywise mirrorlike. In more general terms, when the
evanescent wave extends with appreciable amplitude across
the rare medium into a nearby region occupied by a higher-
index material, energy may flow through the gap in what is
known as frustrated total internal reflection (FTIR). The
cvanescent wave, having traversed the gap, is still strong
enough to drive elecirons in the “frustrating” medium,; they in
turn will generate a wave that significantly alters the field con-
figuration, thereby permitting energy to flow. Figure 4.55
is a schematic representation of FTIR: the width of the
lines depicting the wavefronts decreases across the gap as a

“Take a lock at the fascinating article by K. H. Brexhage,
“Monomotecular fayers and light.” Sci. Am, 222, 108 (1970).

Figure 4.55 Frustrated total internal reflection.

reminder that the amplitude of the field behaves in the same
way. The process as a whole is remarkably similar to the guan-
tum-mechanical phenomenon of barrier penetration or tun-
neling, which has numerous applications in contemporary
physics.

One can demonstrate FTIR with the prism arrangement of
Fig. 4.56 in a manner that is fairly self-evident. Moreover, if
the hypotenuse faces of both prisms are made planar and par- &
allel, they can be positioned so as to transmit and reflect any -
desired fraction of the incident flux density. Devices that per-
form this function are known as beamsplitters. A beamsplitter
cube can be made rather conveniently by using a thin, low-
index transparent film as a precision spacer. Low-loss reflec-
tors whose transmittance can be controlled by frustrating
internal reflection are of considerable practical interest. FTIR
can also be observed in other regions of the electromagnetic
spectrum. Three-centimeter microwaves are particularly easy
to work with, inasmuch zs the evanescent wave will extend
roughly 10° times farther than it would at optical freguencies.
One can duplicate the above optical experiments with solid
prisms made of paraffin or hollow ones of acrylic plastic filled.
with kerosene or motor oil. Any one of these would have an
index of about 1.5 for 3-cm waves. It then becomes an easy
matter to measure the dependence of the field amplitude on y.
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{c)

Figure 4.56 {(a) A heamsplitter utilizing FTIR. (b) A typical modern
application of FTIR: & conventional beamsplitter arrangement used to
take photographs through a microscope. (c} Beamsplitter cubes. (Fhoto
courtesy Melles Griot)

4.8 Optical Properties of Metals

The characteristic feature of conducting media is the presence
of a number of free electric charges {free in the sense of being
unbound, i.e., able to circulate within the material}. For metals
these charges are of course clectrons, and their motion consti-
tutes a current. The current per unit area resulting from the
application of a field E is related by means of Eq. {A1.15) to
the conductivity of the medium ¢. For a dieleciric there are no
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Iree or conduction electrons and o = (), whereas for metals o
is nonzero and finite, In contrast, an idealized “perfect” con-
ductor would have an infinite conductivity. This is equivalent
to saying that the electrons, driven into oscillation by a har-
monic wave, would simply follow the field’s alternations.
‘There would be no restoring force, no natural frequencies, and
no absorption, only re-emission. In real metals the conduction
electrons undergo collisions with the thermally agitated lattice
or with imperfections and in so doing irreversibly convert
electromagnetic energy into joule heat. The absorption of radi-
ant energy by a material is a function of its conductivity.

Waves in a Metal

If we visualize the medium as continuous, Maxweli’s Equa-
tions lead to

K E &R EGH)
T = e
T

(4.74)
axt oyt A

ol
oo

at
whicll)i_s Eq. (A1.21) in Cartesian coordinates. The last term,
o 9B/ a1, is a first-order time derivative, like the damping
force in the oscillator model (p. 71). The time rate-of-change
of B generates a voltage, currents circulate, and since the
material is resistive, light is converted to thermal energy—
ergo absorption. This expression can be reduced to the unat-
tenuated wave equation, if the permittivity is reformulated as
a complex quantity. This in turn leads to a complex index of
refraction, which, as we saw earlier (p. 71), is taniamount to
absorption. We then need only substitute the complex index

A= ngp— ing (4.75)
{(where the real and imaginary indices ng and n; are both real
nuinbers) into the corresponding solution for a nonconducting
medium. Alternatively, we can utilize the wave equation and
appropriate boundary conditions to yield a specific solution. In
either event, it is possible to find a simple sinusoidal plane-
wave solution applicable within the conductor. Such a wave
propagating in the y-direction is ordinarily written as

E= E)D cos (wi — ky)

or as a function of »,

E = I, cos w{t — Ay/c)

but here the refractive index must be taken as complex. Writ-

ing the wave as an exponential and using Eq. (4.75) yields .

E;, _ ﬁoe(*mn!y/c}eiaj(f“n,‘,}‘/f) (476} :

or E = E)Oe”w”fyfc cos w(t — npy/e) (4.79

The disturbance advances in the y-direction with a speed ¢ /s, =
precisely as if ng were the more usual index of refraction. As |
the wave progresses into the conductor, its amplitude, Eqexp |

(—wngy/c), is exponentially attenuated. Inasmuch as irradi- |
ance is proportional to the square of the amplitude, we have |

Ky) = Iye™ (4.78)

where [, = I{0); that is, I, is the irradiance at y = 0 (the inter-
face), and & = 2wny/c is called the absorption coefficient oo
{even better) the attenuation coefficient. The flux density
will drop by a factor of e 1 = 1/2.7 = L after the wave has
propagated a distance y = 1/w, known as the skin or penetra-
tion depth. For a material to be transparent, the penetration.
depth must be large in comparison to its thickness. The pene-.
tration depth for metals, however, is exceedingly small. For
example, copper at ultraviolet wavelengths (Ag == 100 num) has
a minjscule penetration depth, about 0.6 nm, while it is still
only about 6 nm in the infrared (Ag = 10000 nm). This
accounts for the generally observed opacity of metals, which .
nonetheless can become partly transparent when formed into
extremely thin films (e.g., in the case of partially silvered two-
way mirrors). The familiar metallic sheen of conductors corze-
sponds to a igh reflectance, which exists because the incident
wave canuot effectively penetrate the material. Relatively few
electrons in the metal “see” the transmitted wave, and there:
fore, although each absorbs strongly, little total energy is dis-
sipated by them. Instead, most of the incoming energy :
reappears as the reflected wave. The majority of metals.:
including the less common ones (e.g., sodium, potassiur,
cesium, vanadivin, niobium, gadolinium, holmium, yttrium,
scandium, and osmium) have a sitvery gray appearance 1ike ©
that of aluminum, tin, or steel. They reflect almost all the inci- : 3
dent light (roughly 85 to 95%) regardless of wavelengths and
are therefore essentially colorless. '

Equation (4.77} is certainly reminiscent of Bq. {4.73} ﬂﬂ.d_
FTIR. In both cases there is an exponential decay of the ampli
tude. Moreover, a complete analysis would show that the
transmitted waves are not strictly transverse, there being 2
component of the field in the direction of propagation in boﬂ_l
instances.




The representation of metal as a continuous medium works
: fqzﬂy well in the low-frequency, long-wavelength domain of
“the infrared. Yet we certainly might expect that as the wave-
'enalh of the incident beam decreased the actual granular
SALIE of matter would have to be reckoned with. Indeed, the
: Contlnuum model shows large discrepancies from experimen-
1 results at optical frequencies. And so we again turn to the
o Classmal atomistic picture initially formulated by Hendrik
Lorentz, Panl Karl Ludwig Drude (1863-1906), and others.
“Fhis simple approach will provide qualitative agreement with
‘the experimental data, but the ultimate treatment requires

‘quantuim theory.

: Thé Dispersion Equation

‘Envision the conductor as an assemblage of driven, damped
ascillators. Some correspond to free electrons and will there-
fore have zero restoring force, whereas others are bound to the
atont, much like those in the dielectric media of Section 3.5.1.
The conduction electrons are, however, the predominant con-
trihutors to the optical properties of metals. Recall that the dis-
placement of a vibrating electron was given by
x(t) = __EEZ_H.IEW Ef1)
- w?

With no restoring force, wy == 0, the displacement is opposite
in sign to the driving force g, E(f) and therefore 180° out-of-
phase with it. This is unlike the situation for transparent
dielectrics, where the resonance frequencies are above the vis-
ible and the electrons osciilate in-phase with the driving force
(Fig. 4.57). Free electrons oscillating out-of-phase with the
incident light will reradiate wavelets that tend to cancel the
incoming disturbance. The effect, as we have already seen, is
arapidly decaying refracted wave.

Assuming that the average field experienced by an electron
moving about within a conductor is just the applied field F( t),
we can extend the dispersion equation of a rare medium [Eq.

(3.72)] to read
Nze“ e i
o B D T

i, | —w™ + iv.w T oWy @ v

{3.66]

nw) =1+

(4.79)

- The first bracketed term is the contribution from the free elec-
© trons, wherein N is the number of atoms per unit volume. Each
of these has £, conduction electrons, which have no natuzal fre-
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Figure 4.57 Oscillations of bound and free electrons.

quencies. The second term arises from the bound electrons and
is identical to Eq. (3.72). It should be noted that if 4 metal has
a particular color, it indicates that the atoms are partaking of
selective absorption by way of the bound electrons, in addition
to the general absorption characteristic of the free electrons.
Recall that a medium that is very strongly absorbing at a giv-
en frequency doesn’t actually absorb much of the incident
light at that frequency but rather selectively reflects it. Gold
and copper are reddish yellow because ny increases with wave-
length, and the larger values of A are reflected more strongly.
Thus, for example, gold should be fairly opaque to the longer
visible wavelengths. Consequently, under white light, a gold
foil less than roughly 10~° m thick will indeed transmit pre-
dominanily greenish blue light.

‘We can get a rough idea of the response of metals to light
by making a few simplifying assumptions, Accordingly,
neglect the bound electron contribution: and assume that vy, is
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also negligible for very large w, wherezpon

Ne*,

EniN

n(ew) =1~

(4.80)

The latter assumption is based on the fact that at high frequen-
cies the electrons will undergo a great many oscillations
between each collision. Free electrons and positive ions with-
in a metal may be thought of as a plasma whose density oscil-
lates at a natural frequency w,, the plasma frequency. This in
turn can be shown to equal (Ng2/eqm,)"/, and so

nYw) = 1 — (w,/w)’ (4.81)
The plasma frequency serves as a critical value below which
the index is compiex and the penetrating wave drops off
exponentially [Eq. (4.77)] from the boundary; at frequencies
above w,, nis real, absorption is small, and the conductor is
transparent. In the latter circumstance n is fess than 1, as it
was for dielectrics at very high frequencies (v can be greater
than c—see p. 72). Hence we can expect metals in general to
be fairly transparent to X-rays. Table 4.3 lists the plasma fre-
quencies for some of the alkali metals that are transparent
even to ultraviolet.

The index of refraction for a metal will usually be complex,
and the impinging wave will suffer absorption in an amount
that is frequency dependent. For example, the outer visors on
the Apollo space suits were overlaid with a very thin film of
gold (see photo). The coating reflected about 70% of the inci-
dent light and was used under bright conditions, such as low
and forward Sun angles. It was designed to decrease the ther-
mal load on the cooling syster: by sirongly reflecting radiant
energy in the infrared while still transmitling adequately in the

TABLE 4.3 Critical Wavelengths and
Freguencies for Some Alkali Metals

Ay Ay v, =¢/A,
{observed)  {calculated) (observed)

Metal nm nm Hz
Lithium {L}) 155 155 1.94 % 10"
Sodium (Na) 210 209 1.43 x 104
Potassium (K} 315 287 0.95 » 10"
Rubidium (Rb) 340 322 0.38 x 10"

Edwin Aldrin Jr. at Tranquility
Base on the Moon. The pho-
tographer, Neil Armstrong, is
reflected in the gold-coated
visor. (Photo courtesy NASA.)

visible, Inexpensive metal-coated sunglasses which are quite
similar in principle are also available commercially, and
they’re well worth having just to experiment with.

The ionized upper atmosphere of the Earth contains a dis-
tribution of free electrons that behave very much like those,
confined within a metal. The index of refraction of such 2
medium will be real and less than 1 for frequencies above o
In July of 1965 the Mariner IV spacecraft made use of this
effect to examine the ienesphere of the planet Mars, 216 mil-
lion kilometers from Earth.* -

If we wish to communicate between two distant terrestrial:
points, we might bounce low-frequency waves off the Earth's’
ionosphere. To speak to someone on the Moon, however, We!
should use high-frequency signals, to which the ionosphere,
would be transparent.

Reflection from a Metal

Imagine that a plane wave initially in air impinges on a ¢ob
ducting surface. The transmitted wave advancing at somé:
angle to the normal will be inhomogenesous. But if the cot
ductivity of the medium is increased, the wavefronts will:
become aligned with the surfaces of constan: amplitads:
whereupen Et and #, will approach parallelism. In othel:

“R. Von Eshelman, Sci. Am. 220, 78 (1968



ards, in a good conductor the transmitted wave propagates in
a direction normal o the interface regardless of 6.

L Lel's now compute the reflectance, R = 1./1;, for the sim-
'lest case of normal incidence on a metal. Taking n; = 1 and
iy = fi {i.e., the compiex index), we have from Eq. (4.47) that

R“ﬁ_l — {4.82)
RV ERTAVES .
.ﬁnd therefore, since /i = np — iy,
-1 2 -+ 2
_ (g — Iy 4y .

B (np + 1)* -+ n?

- If the conductivity of the material goes to zero, we have the
case of a dielectric, whersupon in principle the index is real (n,
= (), and the attenuation coefficient, «, is zero. Under those
circumstances, the index of the transmitting mediam », is 5y,
“and the reflectance [Eq. (4.83)] becomes identical with that of
Eg. (4.67). If instead »; is Targe while ng is comparatively
small, R in turn becomes large {Problem 4.81). In the unat-
tainable limit where 7 is purely imaginary, 100% of the inci-
dent flux density would be reflected (R = 1). Notice that it is
. possible for the reflectance of one metal to be greater than that
of another even though its n; is smaller. For example, at Ay =
589.3 nm the parameters associated with solid sodium are
~roughly rp = 0.04, n; = 2.4, and R = 0.9; and those for bulk
tinare ng = 1.5, n; = 5.3, and R = 0.8, whereas for a galiium
single crystal np = 3.7, n; = 5.4, and R = 0.7,
The curves of R, and R, for oblique incidence shown in
~Fig. 458 are somewhat typical of absorbing media. Thus,
although R at 8; = 0is about 0.5 for gold, as opposed to near-
ly 0.9 for silver in white light, the two metals have reflectances

o Figure 4.58 Typical
reflectance for a linearly
polarized heam of white light

_ incident on an absorbing
© medium.
3] R,
15}
=
u
= Ry
¢ B 90°
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Figure 4.59 Reflectance versus wavelength for silver, gold, copper,
and aluminum,

that are quite similar in shape, approaching 1.0 at 8; = 90°.
Just as with dielectrics (Fig. 4.48), R, drops to a minimum at
what is now called the principal angle-of-incidence, but here
that minimum is nonzero. Figure 4.59 illustrates the spectral
reflectance at normal incidence for a number of evaporated
metal films under ideal conditions. Observe that although gold
transmits fairly well in and below the green region of the spec-
trum, silver, which is highly reflective across the visible,
becomes trangparent in the ultraviolet at about 316 nm.

Phase shifts arising from refiection off a metal occur in
both components of the field (i.e., parallel and perpendicular
to the plane-of-incidence). These are generally neither 0 nor 7,
with a nofable exception at 6; = 90°, where, just as with a
dielectric, both components shift phase by 180° on reflection.

4.9 Familiar Aspects of the Inter-
action of Light and Matter

Let's now examine some of the phenomena that paint the
everyday world in a marvel of myriad colors.

As we saw earlier (p. 77), light that contains a roughly
equal amount of every frequency in the visible region of the
spectrum is perceived as white. A broad source of white light
(whether natural or artificial) is one for which every point on
its surface can be imagined as sending out a stream of light of
every visible frequency, Given that we evolved on this planet,
it’s not surprising that a source appears white when its ens-



