Properties of the unilateral Laplace transform

s domain

Time domain

Linearity	af(t)+bg(t)	aF(s)+bG(s)
Frequency-domain derivative	tf(t)	-F'(s)
Frequency-domain general derivative	$t^n f(t)$	$(-1)^nF^{(n)}(s)$
Derivative	f'(t)	sF(s)-f(0)
Second derivative	f''(t)	$s^2F(s)-sf(0)-f^\prime(0)$
General derivative	$f^{(n)}(t)$	$s^n F(s) - \sum_{k=1}^n s^{n-k} f^{(k-1)}(0)$
Frequency-domain integration	$\frac{1}{t}f(t)$	$\int_s^\infty F(\sigma)d\sigma$
Time-domain integration	$\int_0^t f(\tau) d\tau = (u * f)(t)$	$\frac{1}{s}F(s)$
Frequency shifting	$e^{at}f(t)$	F(s-a)

 $(fst g)(t) = \int_0^t f(au)g(t- au)\,d au \, \left| \, F(s)\cdot G(s) \,
ight|$

 $e^{-as}F(s)$

 $\frac{1}{a}F\left(\frac{s}{a}\right)$

 $rac{1}{2\pi i} \lim_{T o\infty} \int_{c=iT}^{c+iT} F(\sigma) G(s-\sigma) \, d\sigma$

f(t-a)u(t-a)

f(at)

f(t)g(t)

Time shifting

Time scaling

Multiplication

Convolution