First Postulate: At a fixed time t_0 , the state of a physical system is defined by specifying a ket $|\psi(t_0)\rangle$ belonging to the state space \mathscr{E} .

2

Second Postulate: Every measurable physical quantity \mathcal{A} is described by an operator A acting in \mathcal{E} ; this operator is an observable.

Third Postulate: The only possible result of the measurement of a physical quantity \mathcal{A} is one of the eigenvalues of the corresponding observable A.

4

Fourth Postulate (case of a discrete spectrum): When the physical quantity \mathcal{A} is measured on a system in the normalized state $|\psi\rangle$, the probability $\mathcal{P}(a_n)$ of obtaining the eigenvalue a_n of the corresponding observable A is:

$$\mathcal{P}(a_n) = \sum_{i=1}^{g_n} |\langle u_n^i | \psi \rangle|^2$$

where g_n is the degree of degeneracy of a_n and $\{|u_n^i\rangle\}$ $(i = 1, 2, ..., g_n)$ is an orthonormal set of vectors which forms a basis in the eigensubspace \mathscr{E}_n associated with the eigenvalue a_n of A.

Fifth Postulate: If the measurement of the physical quantity \mathscr{A} on the system in the state $|\psi\rangle$ gives the result a_n , the state of the system immediately after the measurement is the normalized projection, $\frac{P_n|\psi\rangle}{\sqrt{\langle\psi|P_n|\psi\rangle}}$, of $|\psi\rangle$ onto the

6

eigensubspace associated with a_n .

Sixth Postulate: The time evolution of the state vector $|\psi(t)\rangle$ is governed by the Schrödinger equation:

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} | \psi(t) \rangle = H(t) | \psi(t) \rangle$$

where H(t) is the observable associated with the total energy of the system.