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The possibilities for the extension of spectroscopy to two dimensions are discussed. Applications to nuclear 
magnetic resonance are described. The basic theory of two-dimensional spectroscopy is developed. 
Numerous possible applications are mentioned and some of them treated in detail, including the elucidation 
of energy level diagrams, the observation of multiple quantum transitions, and the recording of high­
resolution spectra in inhomogenous magnetic fields. Experimental results are presented for some simple 
spin systems. 

I. INTRODUCTION 

Spectroscopy in its classical form has been developed 
to investigate and to identify molecular systems in their 
linear approximation. Linearity is a crucial condition 
for the spectrum to uniquely represent the input/output 
relations of a physical system. It is particularly well 
fulfilled in optical spectroscopy as long as the use of 
lasers is disregarded. For linear systems, the entire 
apparatus of electronic sY!'tem theory1 can be employed 
to describe the methods of spectroscopy. Of particular 
importance is the equivalence of the notions "spectrum" 
and "transfer function" or "frequency response func­
tion, " on one hand, and of "interferogram" or "free in­
duction decay" and "impulse response," on the other. 
These correspondences proved to be fruitful in connec­
tion with the introduction of Fourier spectroscopy in 
optical spectroscopy2 and in magnetic resonance. 3,4 

It is well known that linearity is merely an abstract 
concept to simplify the mathematical treatment. It 
does not correspond to physical reality, although it may 
be an excellent approximation, in many cases. 

In radio frequency spectroscopy, linearity is re­
stricted to very weak perturbations of the investigated 
system, and nonlinear effects are well known to occur 
in almost any spectroscopic radio frequency experi­
ment. Typical effects are saturation effects, line 
broadening, and line shifts caused by strong perturba­
tions. 5 

Some properties of molecular systems can only be 
noticed through nonlinear effects, e. g., spin-lattice 
relaxation and the connectivity of the various transi­
tions in the energy level scheme. Spectroscopy has, 
therefore, been extended to include methods suitable 
for the investigation of nonlinear properties of molec­
ular systems. 

A straightforward extension of spectroscopy is the 
measurement of saturation curves and the analysis of 
line shapes under the influence of strong rf fields, al­
though, in most cases, the information cannot be ob­
tained directly but must be extracted by means of 
iterative approximation procedures. 6 

The most fruitful class of techniques was certainly 
provided by double resonance. 7,8 Here, a strong per­
turbation serves to modify the system in a nonlinear 
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fashion. The actual spectroscopic experiment, using 
a second, weak perturbation, can again be considered 
as the investigation of a linear system. Of particular 
importance for the elucidation of the topology of energy 
level schemes and indirectly of molecular structure are 
techniques like spin tickling, 9 INOOR, 10 and selective 
population transfer. 11 

Another class of experiments aimed towards the in­
vestigation of nonlinear phenomena, particularly of 
relaxation mechanisms, is formed by pulse experi­
ments which have been developed into a large variety of 
techniques of great practical importance. 3,12,13 

All these methods have been devised to measure 
specific properties connected with some nonlinear be­
havior of systems. In this paper, a very general class 
of techniques will be described which is suitable for a 
much wider characterization of nonlinear properties. 
Many of the earlier techniques are contained as special 
cases. 

For the description of the nonlinear properties, it is 
not sufficient to consider just amplitude, perhaps in­
cluding phase, as a function of frequency as it is done 
in classical spectroscopy. It is necessary to include 
at least one further parameter such as rf field strength, 
time, or a second frequency as is done, for example, 
in double resonance. 8 A graphic representation of such 
a set of data naturally leads to two-dimensional or, 
more generally, to multidimensional spectroscopy. 

In the following, we will call a two-dimensional (or 
multidimensional) plot of spectral data a "two-dimen­
sional (or multidimensional) spectrum" only when all 
variables of the plotted function are frequencies, in 
contrast, for example, to stacking, in a two-dimen­
sional manner, a set of spectra as a function of time as 
is frequently done in relaxation time measurements. 13 

Many possibilities to generate 2D spectra are conceiv­
able. Some basic schemes are shown in Fig. 1. 

(a) Frequency space experiment. The simultaneous 
application of two frequencies and measuring the re­
sponse as a function of both frequencies leads directly 
to a 2D spectrum. This is the prinCiple of convention­
al double resonance. 8 An example of a 2 D tickling 
spectrum of the triplet of 1,1, 2-trichloroethane is 
shown in Fig. 2. A complicated pattern of ridges of 
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FIG. 1. Basic schemes to n.easure and compute 2D spectra. 
fJ =Fourier transformation, e = crosscorrelation. 

changing amplitudes results. In addition, the pattern is 
strongly dependent on the rf field strength used. 

(b) Mixed frequency space time space experiment. 
A system perturbed by a strong rf field with frequency 
Wz can be investigated by applying an rf pulse and mea­
suring its response. Fourier transformation of the 
free induction decay and repetition of the experiment 
for various perturbing frequencies leads also to a 2D 
spectrum with properties very similar to those of con­
ventional double resonance. a ,1S 

(c) Time space experiment. A 2D experiment done 
completely in time space requires two independent time 
variables as a function of which a signal amplitude can 
be measured. A 2D Fourier transformation of the 2D 
time Signal produces then again a 2D spectrum. 16,17 

(d) Stochastic resonance experiment. From the re­
sponse of a nonlinear system to a Gaussian random per­
turbation, it is also possible to compute a 2D spectrum 
by calculating higher cross-correlation functiOns be­
tween input and output noise and Fourier transforming 
them. 18 

It is not intended to give a complete survey of all 
possibilities to create 2D spectra. This paper will be 
limited to the analysis of time space experiments which 

FIG. 2. Proton resonance 2D tickling spectrum of 1,1,2-
trichloroethane. The doublet is irradiated at various freq uencies 
w2; Wt is swept through the triplet part of the spectrum. A 
related 2D FTS spectrum is shown in Fig. 15. 
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FIG. 3. Partitionirig of the time axis in a 2D FTS experiment. 

appear to be particularly fruitful. They are also of 
conceptual interest as they are generalizations of well­
known pulse experiments and exhibit the essential fea­
tures of these experiments in a particularly clear way. 

Section II gives a brief survey of some possibilities 
of 2D spectroscopy. The general theory of the basic 
experiment is described in Sec. III. Considerable sim­
plifications are obtained by the restriction to weakly 
coupled systems. This is shown in Sec. IV. As an 
example of a strongly coupled spin system, the two­
spin system is treated in Sec. V. Section VI is devoted 
to the phenomena in systems including equivalent spins, 
and Sec. VII describes the interesting features of 2D 
spectroscopy in the presence of inhomogeneous mag­
netic fields. Methods to observe zero quantum and dou­
ble quantum transitions are treated in Sec. VIII. A 
few experimental aspects are mentioned in Sec. IX, 
although details on data processing in two dimensions 
and further applications will be described at another 
place. 

It should be emphasized at this point that this work 
was stimulated by a presentation of Professor Jean 
Jeener at the Ampere International Summer School II, 
Basko Polje (1971), who mentioned the idea of the two­
pulse version of 2D spectroscopy. The first experi­
ments in Jeener's group were performed later by 
Alewaeters. 16 

II. TWO-DIMENSIONAL FOURIER SPECTROSCOPY 

In 2D FTS, the 2D spectrum is obtained by Fourier 
transforming a signal s(t1 , t) which depends on two in­
dependent time variables t1 and t2• For the introduc­
tion of two time variables, it is necessary to mark out 
two points on the time axis and to partition the experi­
ment time into three periods. For the present purpose, 
it is convenient to let t1 be the duration of the second 
period and t2 the running time in the third period, as 
shown in Fig. 3. The signal s(t1 , t2 ) is then measured 
in the third period as a function of t2 with t1 as a pa­
rameter. 

The three phases which are characteristic for all 2D 
FTS experiments are named according to their physi­
cal significance: 

t < 0; Preparation period. The system is prepared 
in a suitable initial state, described by the density op­
erator u(O). 
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FIG. 4. Some homonuclear schemes' for 2D FTS. (a) Basic 
two-pulse experiment. (b) Observation of Torrey oscillations. 
(c) Detection of a nonequilibrium state. (d) Fourier zeugma­
tography. (e) Detection of transient oscillations in CIDNP. 

o < t < t1: Evolution period. The system evolves un­
der the influence of the Hamiltonian JeU ) and assumes 
at the end of this interval a particular state which de­
pends on Je(l) and on the elapsed time fl' 

t1 < t: Detection period. The system develops fur­
ther under the influence of the Hamiltonian Je(2). Dur­
ing this time, the transverse magnetization My(t1' t2) 
= s(t1> t2 ) is detected as a function of t2• 

A large number of experiments for different duration 
t1 of the evolution period have to be performed to ob­
tain a sufficiently dense sampling of the 2D time func­
tion s(t1, t2 ). In a multidimensional extension of 2D 
spectroscopy, the system has to go through several 
evolution periods, each of which must be varied sys­
tematically in its length. 

Many homo- and heteronuclear experiments are pos­
sible which conform to this general scheme. Some pos­
sibilities are shown in Figs. 4 and 5. The basic exper­
iment, suggested by Jeener, 16 is the two-pulse experi­
ment of Fig. 4(a). The preparatory phase ends with a 
nonselective rf pulse at time t= 0 (called preparatory 
pulse). A flip angle of 90° is usually employed to gen­
erate off-diagonal elements of the density operator 
which evolve under the influence of the Hamiltonian 
Je(l) during the evolution period. This period is ended 
by a second rf field (called mixing pulse) at time t= t1• 

lt mixes the various magnetization components and en­
ables their measurement during the detection period. 
This experiment permits elucidation of the energy level 
schemes of coupled spin systems. A very Simple ap­
plication is also the distinction of resonance lines be­
longing to different molecules in a mixture. A detailed 
analysis of this experiment is given in Sec. m. 

In the experiment shown in Fig. 4(b), an rf field is 
applied during the evolution period. Separate prepara­
tion and mixing pulses are not required. During the 
evolution period, Torrey oscillations will develop. 
They can be associated with the various resonance tran­
sitions. A modification of this experiment, adding a 
magnetic field gradient during the detection period, may 
serve as a means to measure the spatial inhomogeneity 
of the rf field strength. 

Figure 4(c) shows an experiment where a nonequi­
librium state a(O) is created during the preparatory 
period. The first two pulses applied permit the popu­
lation of all matrix elements of the density operator. 
The behavior during evolution and detection periods 
then completely characterizes the initial nonequilibrium 
state. Here, 2D spectroscopy is a means to measure 
the instantaneous state a(O) of a perturbed system, in­
cluding the matrix elements responsible for the higher 
order transitions. An example of this experiment is 
analyzed in Sec. VIII. 

Fourier zeugmatography may be considered as a 
speCial case of 2D (or 3D) spectroscopy.19 Figure 4(d) 
shows a preparatory pulse which generates the required 
transverse magnetization which precesses during the 
following time periods in the presence of two different 
magnetic field gradients. lt permits measurement of 
the 2D or 3D spatial spin density of macroscopiC (bio­
logical) objects. 

Nonequilibrium states can also be created by non­
magnetic perturbations, for example, by initiating a 
chemical reaction by means of a light pulse at time f = O. 
Figure 4(e) indicates an experiment which has been 

a) 
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b) 
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c) 

s 

FIG. 5. Some heteronuclear schemes for 2D FTS. The S 
magnetization is observed. (a) 2D-resolved carbon-13 reso­
nance. (b) Transitory cross polarization in solids. (c) Hetero­
nuclear two-pulse experiment. 

J. Chern. Phys., Vol. 64, No.5, 1 March 1976 



2232 Aue, Bartholdi, and Ernst: Two-dimensional spectroscopy 

used to measure off-diagonal elements of the density 
operator a(O) created during the chemical reaction in 
chemically induced dynamic nuclear polarization. zo 

The heteronuclear experiment shown in Fig. 5(a) 
leads to 2D-resolved carbon-13 spectroscopy, a prom­
ising method to unravel complicated undecoupled car­
bon-13 spectra. During the evolution period, the 13C 
spins precess in the absence of proton-carbon cou­
plings while the complete Hamiltonian determines the 
evolution during the detection period. This permits 
separation of the multiplets which originate from dif­
ferent carbon spins. Zl 

Figure 5(b) shows a typical cross-polarization ex­
periment used in solids to detect rare nuclei. zz The 
evolution period here is identical with the cross-po­
larization time. During this period, transient oscilla­
tions have recently been observed. They are caused 
by the coherent dipolar interaction of directly bound 
nuclei. a3 A 2D representation of these phenomena per­
mits one to obtain structural information on solid sam­
ples, for single crystals as well as for powders. An 
interesting modification of this technique has recently 
been developed by Waugh. a4 

Figure 5(c), finally, sketches an experiment which is 
a heteronuclear modification of the basic two pulse ex­
periment. It permits one to unravel the multiplet struc­
ture of heteronuclear spin systems. Many more modi­
fications are conceivable involving pulsed and continu­
ous rf fields, optical irradiations, magnetic field gra­
dients or field jumps, and other perturbations leading 
to two- or multidimensional spectra. 

In all these experiments, a 2D Fourier transforma­
tion is required to generate the desired complex 2D 
spectrum S(Wl' wz): 

S(Wl' wa) = fa'" dt 1 exp(- iWltl) 10'" dtz[exp(- iwztZ)]s(th ta) • 

(1) 
It may be considered as a sum of four terms: 

S(wh wa) = S CC(Wl' wz) - S ""(Wh wz) 

with, e. g., 

SCC(Wh Wz)=l'" dt 1 coS(W1t1 ) 1'" dtz[cos(Wzfz)]s(thta)' (3) 
o 0 

In many cases, it is more convenient to plot one of the 
four real components scc(wt> wz), S""(wt> wz), SC"(whwa), 
or S"'C(wh wa) instead of real or imaginary part of 
S(Wl' wal. SCC(Wh wz) can be considered as a four 
quadrant average of S(W l , wa): 

S CC(Wh wz) = t {S(Wh wa) + S(Wl' - wa) + S(- WI' wz) 

+ S(- wi> - wz)} • (4) 

The following symmetry relations can easily be veri­
fied 

S(- WI, - wa) = S(Wh wz)* , 

SCC(_ Wh wa) = SCC(wh - wz) = Scc(_ wt> - wa) 

= SCC(Wh wa) , 

- SSS(_ WI, wa) = - S SS(Wi> - wz) = S8S(_ wt> - wa) 

= SS8(Wh wa) , (5) 

- SSC(_ WI, wz) = S sC(wh - wz) = - S 8C(_ WI' - wa) 

= SSC(Wi> wa) , 

Scs(_ WI, wz) = - scs(wl , - wa) = - SC8(_ WI' - wa) 

= S CS(Wl' wz) • 

In many applications, it is sufficient to compute the 
absolute value of S(wh wz) instead of plotting one of the 
phase sensitive components, e. g., S CC(wl , wa). The 
absolute value spectrum is much less critical to ad­
justment, but clearly, it contains less information. 
The absolute value spectrum I S I (wh wa) will be defined 
in the following particular manner: 

lsi (wh wa)=HI S(wt> wa)la+ I S(Wl' - wa)la 

+ I S(- WI, wz)lz+ 15(- wh - wa)lz]1/a. (6) 

This definition has the advantage that the contributions 
from all four quadrants will be taken into account, for, 
in some cases, peaks may contribute to two of the four 
quadrants only. Taking the absolute value spectrum, 
it is sufficient to plot one quadrant only. It can easily 
be shown that 

I S I (WI' wa) = [S CC(Wh wz)a + 5 C8(Wh wz)Z + S 8c(Wl' wz)a 

This equation is important for the numerical evaluation 
of experimental data. 

III. THEORETICAL DESCRIPTION OF 2D FTS 

In this section, a general 2D FTS experiment will be 
analyzed. At time t=O, the system is assumed to be 
prepared in a state described by the density operator 
a(O). It can be an arbitrary nonequilibrium state. zo 
During the time interval 0 < t < tt> the system develops 
freely under the influence of the time-independent Ham­
iltonian Jew. At time t = tl , the density operator is ro­
tated by an rf pulse, represented by a superoperatorZ5 

R. In special cases, this rf pulse may be absent [e. go, 
Figs. 4(b), 4(d), 5(a), and 5(b)]. During the remaining 
time, t> tl , the system develops freely under the time­
independent Hamiltonian Je(a). In many cases, Jew = Je(Z) 
[e. g., Figs. 4(a), 4(c), 4(e), and 5(c)]. In certain 
cases :Je(!) and Je(Z) can also represent time-independent 
Hamiltonians in a rotating frame [e. g., Figs. 4(b) and 
5(b) ]. 

The motion of the system is described by the density 
operator equation 

u = - i[Je(t), a] - r{a - ao(t}} , (8) 

with 

Je(t) = 1 
{

Je(l) for 0 < t < t 

Je(2) for t > t l , measured in frequency units. 

Je(!) and Je(Z) are assumed to be high field Hamiltonians. 
The equilibrium density operator ao may be different 
in the two time intervals, 
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{

u (1) for 0 < t < t o 1 , 

uo(t) = (a) 
u 0 for t > t1 • 

(9) 

A 

r is the relaxation superoperator. 

In a shorthand superoperator notation, a5 Eq. (8) can 
be written as 

(10) 

with 

JC(t)u = [JC(t) , u] • 

This notation permits a straightforward solution for the 
density operator u(th ta) at time t= t1 + ta: 

( ) 
(a) (. ~ (2) ~ 

U th ta = Uo + exp - tJC ta - rta) 

X[~{U~ll + exp(- i~ (llt1 - rt1)(u(0) - U61l )}- uc?)] . 

(11) 

The observed magnetization component, e. g., My(thta), 
is then given by 

My(t1' ta) = NylfTr[F yu(th ta)] .. .. .. 
= NytiTr[Fy exp(- iJC(2)ta - rta)R{U61) 

~ '" + exp(- iJC(1)t1 - rt1)[u(0) - (61)]} ] • (12) 

N is the number of spi~ systeIps per unit volume. The 
terms uc?) and exp(- iJC(2)ta - rta)U6a) usually do not con­
tribute to the observed magnetization and have been 
neglected in Eq. (12). The 2D spectrum S(wh wa) is 
finally obtained by a 2D Fourier transformation of 
My(t1' ta), 

S(W1' wa)= l~ dt1 e-lw1t1J~ dtae-IW~aMy(th ta) • (13) 
o 0 

For the explicit evaluation, it proves to be convenient 
to separate My(t1' ta) into the parts originating from the 
diagonal and off-diagonal parts of u(O), respectively. 
"Diagonal" and "off-diagonal" refer here to the Ham­
iltonian JCCll which is assumed to possess nonde­
generate eigenvalues. This separation can be effected 
by means of a pair of projection superoperators with 
the properties 

1> :: 
d+n=1, 

3a=3 ~a=~ , 
dJC(1) = JC U ) , 
~ 

[dA,JCU)] = 0 for any operator A. 

One obtains 

My(t1' ta) = M yd(t1' ta) + M~(th ta) , 

with 

and 

M~(th ta) = .lV;ilfTr(Fy exp(- i:k(2)ta - f.ta)R 

( ." U) '" ~ ( )] x exp - tJC t1 - rt1fTlU 0 . 

(14) 

(15) 

(16) 

(17) 

M~(t1' ta) comprises those components which show an 

AXIAL PEAK 

(@) 
, 

FIG. 6. Schematic representation of the features of a 2D 
spectrum. 

oscillatory behavior during the evolution period. They 
will, finally, be responsible for cross peaks and dia 
peaks in the 2D spectrum (see Fig. 6). These compo­
nents contain the .information which relates various 
transitions and which permits one to trace out the ener­
gy level diagram. ~(tl' t.), on the other hand, repre­
sents magnetization components which remain longi­
tudinal during the evolution period and which do not os­
cillate during this time interval. M~(tl' ta) produces the 
axial peaks and provides information on spin-lattice 
relaxation processes. 

A. Off-diagonal elements of u(O) 

In the absence of almost degenerate transitions and 
of partially Clverlapping lines, it is possible to neglect 
all parts of r which do not commute with X. It is, 
therefore, assumed that 

[Xu>, r]=[:k(a), r]=o. (18) 

Taking into account that the relaxation superoperator 
f (represented, e. g., by the Redfield relaxation ma­
tr~6) is a symmetric superoperator, i. e. , 

:: .. 
Tr{AtrB} = Tr{(rA)tB} , (19) 

one obtains 

M~(tl' ta)= NyliTr{[exp(i:k(2)ta- rta)Fy] 
It ~ ~ *: 

XR[exp(- iJC(1)t1 - rt1);iu(0)]} • 

In explicit notation, M~(th ta) is given by 

M~(tl' ta) = Nylf L L [F y/ll exp(iw~~)t2 - ta/Ta~I)] 
III ttl" 

with 

W!> = JC.!.t,,: - JC.:!) , 
w~) =~:) -JCF,) • 

(20) 
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In the absence of overlapping lines, each transition 
possesses a single relaxation time T2k1" The matrix 
elements of Fy are computed in the eigenbase of JC(2), 
whereas the matrix elements of ~a(O» are evaluated 
in the eigenbase of JCC1l. The matrix elements of the ., 
superoperator R are, therefore, calculated in a mixed 
base. This is indi<;,ated by the index (21) on R~~;~n. 
It is assumed that R causes a rotation by the angle a 
around the x axis. It is then possible to give an ex­
plicit expression for R~~~~n: 

R~~;~n= LLRp",R:nTokTtl • (22) 
P a 

Rpm and Ron are matrix elements of the rotation opera­
tor 

(23) 

taken in the eigenbase of JC(1), and Tqk and Tpi are ma­
trix elements of the transformation operator relating 
the eigenbases {e~l)r and {e~2)} of the Hamiltonians JCCll 
and JC(2), respectively: 

(24) 

Equation (21) clearly shows the structure of M~(ti,t2}. 
It consists of a sum of bilinear terms in damped oscil­
lations originating from the Hamiltonians JC(1) and JC(2). 
The amplitudes of oscillation are determined by the 
matrix elements of a(O} and Fy, respectively. The bi­
linear coupling coefficients are provided by the super­
operator it The oscillation frequencies w~!), can ingen­
eral, comprise all possible transition frequencies of 
JC (1), including the forbidden zero-, double-, and multi­
ple-quantum transitions. The oscillation frequencies 
w~~), on the other hand, are limited to the allowed 
single quantum transitions of JC(2). 

Of primary interest are the contributions to speCific 
peaks in the 2D spectrum. M~(ti' t2 } will therefore be 
split into a sum of contributions M~kl,mn(ti' t2 ) which re­
late the transitions w~~) and w~t,:: 

and 

M;kl,mn(ti , t2 )=Zu.mn exp(iw:~)t2- tzlT2kI } 

xexp(- iW~t,:ti- ttlT2mn ) • 

(25) 

(26) 

Zkl,mn are the complex signal amplitudes with 

Zkl,mn = NynFYkIR:~;~n~a(O»mn • (27) 

They are the central quantities which have to be com­
puted later on . 

The contributions to one specific peak in the 2D spec­
trum 5(wi , w2 } are obtained by Fourier-transforming 
M~kl,mn(tl' t2}: 

5kl ,mn(W1, w2)= 100 

dt1 e-lwltlfOO dt2e-iW2t2M~kI,mn(tl' t2} 
o 0 

with 

= Zkl,mn[a:~)(W2} - id:~)(w2)1 

x[a~t,,:(Wl)- id~!1(Wl)] , 

(2)()_ l/T2k1 
au W2 - (W2 _ W:~)}2 + l/T~kl 

d:~)(W2) = (W2 - w~~»/[<iW2 - Wk~»2 + l/T~kl] • 

(28) 

Equation (28) shows that neither real nor imaginary 
parts of the complex spectrum will ever be of pure 2D 
absorptive or dispersive character but that a more 
complicated line shape will be obtained. For the real 
part, one obtainS, for example: 

Re{5kl ,mn(W1, w2)}= Re{ZkI,mnHa~)(w2)a~~)(wl) 

- d~~)(w2)d~!1(wi)1 

+ 1m {Zkl,mnr [d!~)(w2)an'.!)(Wl} 

+ a~~) (W2)d~!1 (Wi)] • (29) 

To avoid these complicated mixed line shapes, it is of 
advantage to utilize a real 2D cosine Fourier transfor­
mation and to plot 5 cC(Wl' w2 ) [Eq. (3)]. According to 
Eq. (5), 5 CC(w1, w2) is even in two dimensions. The in­
formation in all four quadrants is identical. 

The four peaks generated by each pair of transitions 
(kl) and (mn), one in each quadrant, are conveniently 
combined in one single term 5(',.cll (mn)(Wl> w2): 

5&,,) (mn)(Wl> w2) = 5kl~mn(wl' w2} + 5k
Ct,nm(w1, w2} 

+ 5,~c,mn (Wi' W2) + 5'~~nm(WlI W2}. (30) 

The terms 5g~,mn(Wi' w2 ) are related to 5kl ,mn(Wl> w2 ) 

through Eq. (4). The signal contribution 5(;.c
'
)(mn)(Wi,W2) 

can be written in the form 

5/'';IlCmn) (Wi' W2) = A(kll (mn){a~)(W2) + a~:)(W2}}{a~~)(Wi} + a~!1(Wi)}+ BCkIl (mn){- dk~)(W2} + d~)(W2}H- d~t,:(Wi} + d~!: (Wl)} 

+ C Ckll (mn){a~)(W2) + a::) (W2}}{- d~t,:(Wi) + d~!:(Wi)}+ DCkIl(mn)M~) (W2) - d~)(W2)Ha~1':(Wi) + ~!1(Wl)} (31) 

Here, (kl) and (mn) are ordered pairs of indices with 
Mk :::: M, and M",:::: Mn· Mk is the magnetic quantum num­
ber of state k. This notation reduces the number of 
terms in the summation for the signal 5 cc(wi , W2) by a 
factor of 4. Similar expressions can be obtained for 
the 2D sine and mixed sine-cosine transforms, 
5118')(mn)(wl' W2), S("sll(mn)(Wi' W2), and S&,c')(mn)(Wl> w2). 

The real amplitudes ACkIl(mn)' .•. ,DCkI)(mn) of Eq. (31) 

are related to the complex amplitudes Zkl .... ' defined in 
Eq. (27), by 

ACkIl(mn) = tRe{Zkl.mn + Z,k.mn} , 

BCkIl (mn) = t Re {Zkl.mn - Z Ik.mn} , 

Ca.1l (mn) = t Im{Zkl.mn-+ Z,k.mn} , 

DCkIl (mn) = t Im{Zu.mn - Z'k.mn} , 

(32) 
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utilizing the property Zkl,mn=Z,tnm' The virtue of Eq. 
(31) is that, for proper phase adjustment, only one term 
remains, so that peaks with a pure phase can be ob­
tained. For phase adjustment, it is necessary to form 
linear combinations of S~cIlCmnl> Sil,BIlCmn )' S(i,"IlCmn), and 
S;:,cll Cmn)' 

The absolute signal amplitudes [compare Eq. (6)], 
given by 

I Z I kl,mn = ~[I zkI,mnl
2 

+ I Zkl,nml
2 

+ I Z lk,mnl
2 

+ I Z'k,nmI2]1/2, 

(33) 
can also be expressed by the real amplitudes ACkI)(mn), 

..• ,DCkIl Cmn): 

I Z I kl,mn = [A~kl)(mn) + ifCkI)(mn) + C~IlCmn) + D~1l (mn)]1/2 • 

Two different kinds of. peaks can be distinguished 
which originate from Skl,mn(Wl' w2) (see Fig. 6): 

(34) 

(i) Cross peaks: they occur for (kl) '" (mn) and corre­
late different transitions. These are the "off-diagonal" 
peaks in a 2D spectrum; and 

(ii) Dia peaks: they occur for (kl) = (mn) and are re­
lated to one single transition, only. They occur on the 
main diagonal of the 2D spectrum. 

Cross and dia peaks contain three kinds of informa­
tion: 

(a) Information about the connec tivity of transitions 
in the energy level diagram. This information is 
analogous to the one obtained from double resonance, 
particularly from tickling exp~riments. 9 It is provided 
by the rotation superoperator R which couples the vari­
ous transitions. Particularly informative is also the 
flip angle dependence of intensities and phases. 2D 
spectra contain a wealth of information on the topology 
of the energy level diagram; 

(b) Information on transverse relaxation processes. 
The line shapes are determined by the transverse re­
laxation times T 2kl• As will be shown later, they can 
also be determined even in the presence of field in­
homogeneity broadening; 

(c) Information on the initial state a(O) of the spin 
system. In conventional spectroscopy, allowed transi­
tions can be detected only. In 2D FTS, on the other 
hand, it is possible to measure all matrix elements of 
a(O) in a unique manner. Particularly, it is possible 
to observe matrix elements responsible for zero-, 
double- and multiple-quanta transitions. This will be 
shown in Sec. VIII. 

B. Diagonal elements of a(O) 

The contributions of the M~(th t2 ) term, which leads 
to the axial peaks, will now be evaluated in a similar 
manner. With Eq. (18), one obtains from Eq. (16) 

(35) 

and in explicit matrix notation 

M ~(th t2) = Nyli L L [F yk I exp(iw:~) t2 - t21 T 2k I )]R:~~~m 
kI m 

Here, the diagonal elements of the density operator in 
the eigenbase of X (1

) have been identified with the popu­
lation numbers Pn : 

Pn(O)=ann(O),pon=a~!~, (37) 

and W is the Redfield relaxation matrix26 which de­
scribes the longitudinal relaxation in a coupled nuclear 
spin system with 

(38) 

The matrix elements of exp(- Wt1) can be expressed by 
the eigenvalues wJ of W: 

[exp(- Wt1)]mn = L SmJ S:J exp(- wJ t1) , (39) 
. J 

with S representing the diagonalizing transformation of 
w. 

M ~(tl' t2) will now be split into the various contribu­
tions to particular resonance peaks: 

(40) 

with 

M ~kl(tl' t2) = Gki exp(iwk~)t2 - t21T 2k1) , (41) 

and 

M~',J(tl' t2) = Gkl,J exp(iw:~)t2 - t2IT2kI ) exp(- wA). (42) 

The coefficients are given by 

Gu = NyliF yk I L R~~~mPom 
m 

(43) 

Gkl,J = NyliFYkl L LR~~~mSmJS.t(Pn(O) - pan) • 
m n 

Equation (41) shows that M:kI (t1 , t2 ) is independent of fl' 

To obtain a nondiverging Fourier integral, it is there­
fore necessary to limit the integration to 0 < f1 < fm 

where fm is a suitable upper limit for f1: Then, one 
obtains 

SkI,j(W1, W2)=Gkl,J{ak~)(w2)- id:~>(W2)}{WJ/{~+z0) 
(44) 

-iw/{wf+wm· 

Of particular interest is again the 2D cosine transform 
of M~(tl' t2). Here, one obtains the following contribu­
tions 

S(i.Cn(Wh W2) = [Re{Gkl}{ak~)(w2) + a::> (w2)} 

- 1m {GkIH- d~>(w2)+d::>(w2)} ] 

1 . 
x - slnw1tm , 

W1 
(45) 
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S Q.1),j(Wl> w2) = [Re {Gkl,j}{a~~) (w2) + a:~)(w2)} 

- 1m {GkI,J}{- d:~)(w2)+d:;)(w2)}] 

x~ . (46) 
WI +Wj 

Equations (45) and (46) describe contributions to the 2D 
spectrum which all lie on the W2 axis (WI = 0). These 
peaks are called axial peaks (see Fig. 6). Each al­
lowed transition Wk~) is represented by a peak which it­
self is a superposition of Lorentzians with half-width 
Wj in the WI direction and which also contains a con­
tribution proportional to (1/ w1) sinw1tm' The line shape, 
therefore, contains uT1" information although, particu­
larly in complicated spin systems, it may be difficult 
to be extracted. 

The complete 2D spectrum is finally obtained as a 
sum of the contributions from Eqs. (31), (45), and (46): 

+ L LS~ClljWl' w2 ) • (47) 
(kll J 

The first term describes the cross and dia peaks, 
whereas second and third terms contribute to the axial 
peaks. 

IV. WEAKLY COUPLED HOMONUCLEAR SYSTEMS 

For weak coupling among N nonequivalent spins !, 
it is possible to derive closed expressions for intensi­
ties and phases in a 2D spectrum. This case provides 
an instructive insight into the features of 2D spectros­
copy. To simplify the Situation, it is assumed that 
the initial state u(O) is prepared by means of a 90; 
pulse acting on a system in thermodynamic equilibrium. 
This produces the initial state 

(0) _1 + (nW~kT)Fy 
u - Tr I} . (48) 

Additionally, JC(2) is set equal to JC(1} • Then, one ob­
tains for the complex signal amplitude Zkl,mn with Eqs. 
(22), (23), and (27) 

Nyn 2w 
Zkl,mn = Q. FYklR ImRtnFymn with Q = kTTr{l}' (49) 

For spin !, the matrix elements FYkl are given by 

~
!i(MI- Mk) for allowed transitions with a 

single spin flipping, ams=± 1 
FYkl = and amr = 0 for r* s 

o for all forbidden transitions. 

Here, M/ is the magnetic quantum number of state l, 
and the matrix elements of the rotation operator Rare 
found to be20 

(50) 

whereo aIm' the spin flip number, is the number of spins 
with different spin polarization in the two states 1 and 
m. With Eqs. (49) and (50), one obtains for Zk/,mn 

x[cos!a]2N-dlm-dknW/-Mk)(Mn-Mm) , (51) 

for pairs of allowed transitions (kl) and (mn). By 
means of Eq. (32), it is finally possible to compute the 
real amplitudes A(kl)(mn)"" ,D(kl)(mn)' It is seen from 
Eq. (51) that Zkl,mn is either real or imaginary. There­
fore, two of the real amplitudes are necessarily zero. 
For transitions with aM=±l, Zkl,mn is found to be real 
and C(kl)(mn) =D{kl) (mn) =0. 

For the amplitudes Gkl and Gkl,J of the longitudinal 
contributions, one obtains Similarly 

Gkl = - i Q 0 L (- 1)dlm(i)dlm+dkm [sin!a]dlm+dkm 
2 m 

x[cos!a]2N-dlm-dkmMm(MI_ Mk) , (52) 

and 

x[cos!a]2N-dlm-dknSmJS:iMn(MI- Mk) • (53) 

To obtain a better understanding of the complex am­
plitudes Zkl,mn [Eq. (51)] it is convenient to introduce 
connectivity classes to distinguish various pairs of 
transitions. 

For a general description of connectivity in weakly 
coupled spin systems, it is necessary to indicate all 
spin states for the two transitions in question. The 
following notation is used here: (1) the two transitions 
in question are indicated by the letter of the flipping 
spin. To identify the particular transition, the lower 
magnetic quantum number of the two connected states 
is indicated by a subscript. For nonequivalent spins 
!, no indexing is required; (2) within brackets, the 
states of all other spins are indicated by their magnetic 
quantum numbers. For nonequivalent spins !, + and 
- are used to fix the spin state; and (3) for magnetical­
ly equivalent nuclei, the group spin quantum number 
(irreducible representation of the permutation group) 
is indicated additionally by a superscript. 

Some examples are: 

(1) 4 nonequivalent spins !: 
[A(B+C..nJ, B<A_C_DJ] ; 

(2) A2X3 system: 

[A (1) ex (3/2» X (3/2) (A (1) )] 
-1 1/2 , -3/2 0 • 

For weakly coupled, nonequivalent spins !, it is 
possible to distinguish three classes of connectivity 
patterns. Their definition follows the well-known 
terminology used for directly connected transitions, 
distinguishing regressive and progressive transitions. 8 

These notions are generalized in the following manner 
(see Fig. 7): 

(a) Parallel pairs: The same spin flips in both 
transitions: 

(b) Regressive pairs: two different spins A and B 
flip in the two transitions. A and B appear with the 
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a 

b 

c 

Tn 
'-I /,,-m / 

A // 
//6km=5-1 

k--/ 

'T Tn 
k-------+---m 

6km= 5-2 

FIG. 7. Definitions of connectivity classes for nonequivalent 
spins!. (a) Parallel pair, two A spin transitions; along the 
broken line S-1 spins ('" A) change their polarization. (b) Re­
gressive pair, one A and one B spin transition; along the 
broken line S-2 spins ('" A ,B) change their polarization. (c) 

Progressive pair, one A and one B spin transition; along the 
broken line, S-2 spins ("'A,B) change their polarization. 

same polarization in the inner brackets: 

e. g., [A(B.C.DJ, B(A.CJ).)] ; 

(c) Progressive pairs: two different spins A and B 
flip in the two transitions, A and B appear with different 
polarization in the inner braCkets: 

Regressive and progressive connectivity reduce to the 
former notion when the transitions are directly con­
nected. For indirectly connected transitions, regres­
sive and progressive pairs are defined such that the 
elimination of all spins which do not flip in either tran­
sition reduces the pair to a directly connected regres­
sive or progressive pair, respectively. 

A convenient shorthand notation considers only (1) the 
number of spins S necessary to describe a certain con­
nection (disregarding spins which neither flip nor have 
different polarization in the two transitions); (2) the 
connectivity character (l = parallel, r = regressive, p 
= progressive); and (3) the total number of coupled 
spins. Examples are: 

[A(B.C.DJ,A(B_C.D.)]-3l4, 

[A (B. C.DJ , B(A.CJ).)] - 4 r 4 , 

[A(B.C.DJ, B(A_C_DJJ- 3p4 • 

This is the entire information which is necessary to 
compute peak intensities in a 2D spectrum, or, in 
other words, it is all the information which can be ob­
tained from a 2D spectrum. 

The spin flip numbers ~Im used in Eq. (50) depend 

only on S and on the connectivity character, and are 
given by the following values: 

Connection ~Im ~kn ~km ~/n 

parallel S 5 5-1 5-1 

regressive 5-1 5-1 
{or ~- 2 

5- 2 
5 

progressive 
{or ~- 2 

S- 2 S-1 S-1 
5 

These values can easily be checked by inspection of 
Fig. 7. A distinction of the two cases indicated for 
both regressive and progressive pairs is immaterial 
since the same signal amplitudes will result in both 
cases. 

This leads, finally, to the following simple relations 
for the complex signal amplitudes Zkl,mn, and for the 
real amplitudes A(kJ)(mn) and B{kn(mn) used in Eq. (31) 
(C (kJ) (mn) = D(kn (mn) = 0 for Single quantum transitions): 

(a) Parallel pairs (S l N): 

Zkl,mn = - tQ(sin~a)2S (cos~a)2N-2S , 

Z Ik,mn = tQ(sin~a)2S-2(cos~a)2N-2s.2 , 

Aa.n (mn) = iQ(sin~a)2S-2(cos~a)2N-2Scosa , 

Ba.n (mn) = - iQ(sin~a)2S-2(cos~a)2N-2S • 

(b) Regressive pairs (Sr N): 

Z = _ .!.Q(sin.!.a)2S-2(cos.!.a)2N-2S.2 
kl,mn 4 2 2 , 

A = - .!.Q(sin.!.a)2S-2(cos.!.a\2N-2s.2 
a.1)(mn) 4 2 2 , , 

B{kl)(mn) =0 • 

(c) Progressive pairs (SpN): 

(54) 

(55) 

(56) 

(57) 

Same expressions as for regressive pairs with oppo­
site sign: 

A{kn (mn) = tQ(sin~a)2S-2(cos~a)2N-2s.2 , 
(58) 

For illustration of Eqs. (54)- (58), amplitude and 
phase for the various transitions of a four-spin system 
are given in Fig. 8 as functions of the flip angle a of 
the mixing pulse. The phase </> is defined here as 

tan</> = B{kn (mn,! Aa.J) (mn) , 

and describes the mixing between pure 2D absorption 
and 2D dispersion signals. The following conclusions 
about the general behavior of 2D spectra for weakly 
coupled spin ~ systems can be drawn: 

(1) The phase of peaks caused by regressive and 
progressive pairs is independent of the flip angle a. 
Regressive and progressive pairs have opposite sign; 

(2) The phase of parallel pairs is dependent on the 
flip angle, changing by 90 0 for a variation of a from 0 0 

to 1800
• All parallel pairs have the same phase; 

(3) For a = 00
, only Il N peaks have a nonvanishing 

intensity. Cross peaks are absent for a=Oo; 
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(4) For a mixing pulse with a = 90°, all cross peaks 
and dia peaks have the same absolute intensity. Paral­
lel pairs cause peaks which are 90° out of phase in 
both w1 and W2 with respect to regressive and progres­
sive pairs; 

(5) For a = 180°, only N 1 N peaks have a nonvanishing 
intensity. All spin polarizations will be inverted and 
only line pairs with completely reversed spin polariza­
tions will produce cross-peaks in the 2D plot. These 
peaks are also responsible for the echo modulation in 
a conventional spin echo experiment. 29 The number of 
peaks in the 2D spectrum is equal to the number of 
peaks in a conventional 1D spectrum, namely N. 2N

-
1

• 

Due to the small number of peaks in the 2D plot, the in­
tensities are maximum in this case and are equal to the 
intensities of the dia peaks for a = 0°; 

(6) The optimum flip angle for maximum peak ampli­
tude changes continuously from 0° to 180° for S in­
creasing from 1 to N for parallel pairs. For regres­
sive and progressive pairs, the same tendency is ob­
served although the covered range of a opt values is 
smaller; 

(7) The attainable peak amplitude is minimum for 
pairs with S""N/2. 

It is obvious that no cross peaks can occur for lines be­
longing to different molecules in a mixture. 2D FTS 
may, therefore, be used to single out the lines of the 
various molecules. 

Experimental and theoretical 2D spectra for a weakly 
coupled two-spin system are shown in Figs. 9-12. The 
theoretical spectrum of Fig. 9 was computed based on 
the more general Eq. (61) for two 900 pulses. SCC(W1,W2 ) 

is shown. For true weak coupling, all 16 peaks would 
show the same absolute intensity, but the phases are 
unequal. All parallel pairs cause 2D dispersion peaks 
whereas regressive and progressive pairs generate 
cross peaks in 2D absorption with opposite signs for 

90· 180· 

FIG. 8. Amplitude and 
phase for the various peaks 
in a 2D FTS of a system con­
sisting of four nonequivalent 
nuclei as a function of the 
flip angle 0' of the mixing 
pulse, 

regressive and progressive pairs. Axial peaks have 
been neglected by setting Tl = 00. 

A phase-sensitive 2D spectrum of a weakly coupled 
two-spin system is given in Fig. 10 with the same 
phase setting as in Fig. 9. The agreement is satis­
factory taking into account the low resolution which is 
limited by the 64-64 data matrix used. Particularly, 
the 2D dispersion peaks are difficult to be represented 
with the present resolution, dictated by the restricted 
computer memory. 

A much more satisfying representation can be ob­
tained by plotting the absolute value spectrum, Eq. (7), 
as shown in Fig. 11. But clearly, the information con­
tent is lower. 

The absolute value plot for a mixing pulse of 180 0 is 
given in Fig. 12. According to Eqs. (54)-(58), only 
four peaks (for parallel pairs) should occur. The four 
additional weak peaks seen are caused by deviations 
from the weak coupling character of the investigated 
spin system. From Figs. 10-12, it can be seen that 
axial peaks do occur, in general, for a 90° mixing 
pulse, but they are absent for a 180° mixing pulse. 

It is possible to distinguish the three connectivity 
classes by performing one single experiment with a 
mixing pulse of 90 0

• To obtain more insight into the 
connectivity and to determine also the number of in­
volved spins S, it is necessary to make measurements 
for several flip angles. Additionally, it is possible to 
enhance, selectively, certain peak amplitudes, by 
a suitable selection of the flip angle. 

The conclusions drawn from the case of weak cou­
pling can not be applied quantitatively to strongly cou­
pled systems although the same tendencies can be ob­
served for strong coupling, as will be shown in the 
next section. A direct generalization to systems with 
magnetically equivalent nuclei is not poSSible, either. 
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FIG. 9. Theoretical 2D FT spectrum of a two-spin system applying two 90° pulses to the system in equilibrium. The parameter 
values used correspond to the proton resonance of 2, 3-dibromothiophene at 60 MHz. The weak coupling assumption was not used. 

v. 2D FTS FOR A STRONGL Y COUPLED TWO-SPIN 
SYSTEM 

In this section, explicit results will be given for a 
strongly coupled two-spin 'system and compared with 
experimental results. It is ass}lmed that the initial 
state u(O) is generated by means of a 90~ pulse starting 
with a system in thermodynamic equilibrium. . Then, 
the complex amplitude Zkl,mn is again given by Eq. (49). 

o 

The matrix representations of the two operators Fy 
and R in the eigenbase of the Hamiltonian are 

(" 
-u 

. u 0 
F =.!.. 

0 y 2 v 

0 u 

-v 

0 

0 

v 

o 

0 

(59) 

0 

FIG. 10. Two-pulse experi­
ment on 2, 3-dibromothio­
ppene. Flip angles for both 
pulses: 90°. 64 experiments 
with different pulse separa­
tion were used. A phase­
sensitive spectrum is shown. 
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cos2(-!-a) - -!-iusina - -!-ivsina - sin2(-!-a) 

R= 
- -!-iusina cos2 (-!-a) - sin20 sin2 (-!-a) - cos20 sin2 (-!-a) - -!-iusina (60) 
- hvsina - cos20 sin2 (-!-a) cos2 (-!-a) + sin20 sin2 (-!-a) --!-ivsina 

- sin2 (-!-a) - -!-iusina 

with u=cosO+sinO, v=cosO- sinO, and tan(20)= 27TJ/ 
(01 - O2). With Eqs. (27), (49), (59), and (60), one ob­
tains finally the following real amplitudes for the 
strongly coupled two-spin system: 

A(12) (12) = i Q cos2(-!-a)(1 + sin20)(cosa - 2 sin2(-!-a) sin20), 

B (12) (12) = - iQ cos2(-!- a)(l + sin20) , 

A (12)(13) = - -h Q sin2 a cos220 , 

B (12)(13) = 0 , 

A (12) (24) = i Q sin2(-!-a)(1 + sin20)(2cos2(-!-a) 

+ cosa· sin20) , 

B(12) (24) = - i Q sin2(-!-a)(1 + sin20) sin20 , 

A (12)(34) = i Q sin2 (-!-a) cosa cos220 , 

B (12) (34) = - i Q sin2 (-!-a) cos220 , 

(61) 

A(13)(13) = t Q cos2(-!-a)(1- sin20)(cosa + 2sin2(-!-a)sin20), 

B(lS) (13) = - i Q cos2(-!-a)(1- sin20) , 

A(13)(34) = i Q sin2(-!-a)(1- sin20)(2cos2 (-!-a) 

-cosa, sin20), 

B (3 )(34)=iQsin2(-!-a)(1- sin20)sin20 • 

The remaining 10 cross and dia peaks of the two-spin 
system can be obtained from the C2v symmetry of the 
corresponding 2D spectrum. For weak coupling, 0 = 0, 
Eq. (61) reduces to Eqs. (55), (57), and (58). 

Equation (61) demonstrates the following complica­
tions caused by the strong coupling (compare Sec. IV): 

(1) The phase of the peaks caused by progressive 
pairs becomes dependent on the flip angle a, whereas 

o 

- -!-iv sina cos2 (-!-a) 

the phase of the peaks caused by regressive pairs re­
mains independent of a for arbitrary coupling strength; 

(2) The phase change of the dia peaks for a variation 
of a from 0° to 180° is different from 90°. The cor­
responding phase change for cross peaks caused by 
parallel pairs is still 90 0

; 

(3) For a = 0°, the dia peaks have all the same phase 
and the same relative intensities as in the slow passage 
spectrum; 

(4) For a mixing pulse a = 90° no equality of the ab­
solute intensities is obtained, but the 2D absolute value 
spectrum has D4h symmetry with the three intensity 
values 

[A~13) (13) + ~13) (13) ]1/2 = -h Q(l - sin20) ,; 1 + sin220 , 

[A~12)(12) + B f12) (12)]1/2 = -h Q (1 + sin20) ,; 1 + sin220 , (62) 

[A~12) (13) + Bf12) (13) ]1/2 = -h Q cos2 20 ; 

(5) For a= 1800
, a total of eight peaks occur: four 

212 peaks and four 2p 2 peaks. Only the dia peaks and 
the regressive peaks are suppressed. The following 
three absolute intensities occur: 

[A~12) (34) + ~12) (34)]1/2 = t Q {2 cos220 , 

[A~12)(24)+Df12)(24)]1/2=iQ{2sin20(1+sin20), (63) 

[A~13) (34) + Df13) (34)]1/2 = i Q {2 sin20(1- sin20) ; 

(6) The dependence of the optimum flip angle for 
maximum peak amplitl\de is similar to the case of 
weak coupling. 

Experimental spectra for a strongly coupled two-spin 
system are shown in Figs. 13 and 14 for a mixing pulse 

FIG. 11. Two pulse experi­
ment on 2, 3-dibromothio­
phene. Flip angles for both 
pulses: 90°. An absolute 
value spectrum is shown. 
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-~ 
~------

o 40 Hz 

of 90 0 and 180 0
, respectively. They confirm the pre­

dictions based on Eq. (61). 

VI. SYSTEMS WITH MAGNETICALLY EQUIVALENT 
SPINS 

In close analogy to the calculation of 1D spectra, it 
is possible to introduce a group spin G for magnetically 
equivalent spins. 27 The 2D spectrum can then be di­
vided into subspectra associated with definite quantum 
numbers for the various group spins. No cross peaks 
will occur between transitions belonging to different 
subspectra. 

The AX2 system may serve as an example. It is 
again assumed that the initial state 0(0) is prepared by 
a 90; pulse acting on a system in thermodynamic equi­
librium. Then, the complex amplitudes Z kl,mn are given 
by Eq. (49). Fy can be written as 

(64) 

Here, Gy(p) is the y-component spin angular momentum 
operator for a group spin p of the two X spins. For 
the rotation operator R, one obtains similarly 

o 10 Wl/2n 20Hz 

FIG. 12. Two-pulse experi­
ment on 2, 3-dibromothio­
phene with 1800 mixing pulse. 
An absolute value spectrum 
is shown. 

R = e-l aF x = (e-laG~ll Ei) e-la Gx (0) )e-lar Ax 

= {[1 (ll _ (1- cOSO!)G~1)2 - i sinO!G~l)] Ei) 1 (O)} 

X [costO!l U/2) - 2i sinto! lAx] • (65) 

The eigenfunctions of the AXz system are numbered in 
the following manner: CP1 = O!O!O!, CPz = {:30!0!, CPs = (0!0:{:3 
+O!{:3O!)/f2, CP4=({:30!{:3+{:3{:30!)/I2, CPs=O!{:3{:3, CP6={:3{:3{:3, CP7 
'= (0!0!{:3- 0!{:30!)/-12 and CPs= ({:30!{:3- (:3{:3O!)/f2. The energy 
level diagram is indicated in Fig. 15. Three pairs of 
transitions are degenerate. 

Based on Eqs. (27), (49), (64), and (65) one finds the 
following real amplitudes for the 2D spectrum: 

A (12) (lZ) =A(S6) (56) = t Q cos4(t0!) cosO! , 

B UZ) (lZ) = B(S6) (56) = - tQ cos4(to!) , 

A(34) (34) = t Q COSSO!; B(S4) (S4) = - t Q COSZO! , 

20Hz 

A(78) (78) = t QcosO!; B(7S)(78) = - t Q , 

A (1Z) (34) = A (56) (34) = fs QSinzO!cosO! , 

B UZ ) (34) = B(S6) (35) = - fsQsinzO! , 

FIG. 13. Two-pulse experi­
ment on 2,3, 4-trichloroni­
trobenzene with a 900 mixing 
pulse. An absolute value 
spectrum is shown. 
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o 

FIG. 14. Two-pulse experi­
ment on 2,3, 4-trichloroni­
trobenzene with a 180" mix­
ing pulse. An absolute value 
spectrum is shown. 

20Hz 

o 
I 7 

10 w1/21T 20 Hz 

A (12H56) =t Qsin4(ia)cosa; B(12) (56) = - t Qsin4(ia), 

A(~~)(m =AG~)(m = i Q cos
2
(ia) cosa , 

B (~~)(~~) = B G~)G~) = - i Q cos
2
(ia) , 

A(~~)(m=iQsin2(ia)cosa , 

B(~~)G~) = - i Q sin
2
(ia) , (66) 

A(12)(~~) =A(56)G~) = - A(12)G~) = - A(56)(~~) = - t Q sin
2
a, 

B(12)(W = B(56)(m = - B(12)G~( - B(56)(~~) = 0 , 

A(34)(~~) =A(34)G~) = B(34)(~~) = B(34)(:~) = 0 • 

The amplitudes with multiple indices refer to degener­
ate transitions. A partial, experimental spectrum of 
the triplet region is shown in Fig. 15 for a mixing pulse 
of 90 0

• The experimental intensities agree well with 
the theoretical values for the relative intensities 

10 Wl/ 21T 

All nine lines have the same phase. 

The following conclusions can be drawn from this 
example: (1) the relative intensities of the dia peaks 
(1,4,1,8,8) for 90 0 flip angle are not equal to the in­
tensities of the 1D spectrum (2,4,2,8,8). This is in 
contrast to the strongly coupled two-spin system; (2) 
for 90 0 flip angle, the central peak of the triplet is ex­
clusively caused by the antisymmetric transition (78); 
(3) the cross peaks which relate transition (34) with the 
transitions (~~) and G~) are zero for all flip angles. 
The reason for the disappearance of these cross peaks 
is that the transitions (~~) and G~) are degenerate. They 
each contain a transition in regressive and a transition 
in progressive connection with transition (34). The 
regressive and progressive contributions are of oppo­
site sign and cancel; (4) the phase relationships are 
similar to those for nonequivalent, weakly coupled 
spins. One can again easily distinguish parallel, re­
greSSive, and progressive pairs. 

VII. 2D FTS IN THE PRESENCE OF AN 
INHOMOGENEOUS STATIC FIELD 

In an inhomogenous static field, the various single 
quantum transition frequencies will become functions 

o 

20Hz 

FIG. 15. Two-pulse experi­
ment on 1,1, 2-trichloro­
ethane with a mixing pulse 
of 90°. A phase-sensitive 
plot is shown with the peaks 
caused by parallel pairs in 
absorption. A 2D filtering 
procedure has been em­
ployed to single out the re­
gion of the CHCl2 triplet. 
The numbering of the energy 
levels for the AX2 system 
is indicated. 
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of the spatial variable r: 

w1k(r)= W1k - yilH(r) , (67) 

where ilH(r) is the deviation of the local field from an 
arbitrary reference field. Accordingly, one obtains 
for the local signal contributions to the 2D spectrum 

s(r,wto w2)=S(W1+yilH(r),wz+yilH(r», (68) 

and for the signal integrated over the sample volume 

S(Wto w2)= f f f drc(r)S(w1 +yilH(r), w2+yilH(r» , 

(69) 

with the local spin density c(r). It is evident that S(w1, w2) 

represents the original 2D spectrum S(wl> W2) smeared 
along the main diagonal only, reducing the resolution 
along this diagonal. On the other hand, the resolution 
perpendicular to the main diagonal remains unaffected. 
This means that much of the inherent information can 
be retrieved even in an arbitrarily inhomogenous mag­
netic field. An example is given in Fig. 16. By cutting 
ID cross sections through such a 2D spectrum, it is 
possible to obtain high resolution spectra in inhomo­
geneous magnetic fields. Clearly, these spectra are 
not equivalent to the conventional ID spectra nor do 
they contain all the information of ID spectra, but, in 
many cases, they contain enough information to solve 
a particular problem. 

The information which can be retrieved even in the 
worst case is restricted to the distance of cross peaks 
from the main diagonal, i. e., it is possible to obtain 
coupling constants and relative chemical shifts of 
coupled nuclei. Uncoupled nuclei do not provide cross 
peaks and, consequently, their shifts can not be de­
termined with more accuracy than in conventional spec­
troscopy 0 The retained resolution relies on the for­
mation of difference frequencies within a molecular 
spin system which are completely independent of 
macroscopic field inhomogeneities. 

It must be emphasized that the stringent requirement 
for magnetic field stability remains. The field-fre-

FIG. 16. Two-pulse experi­
ment on 2, 3-dibromothio­
phene with a 90° mixing 
pulse in a simulated inhomo­
eneous : magnetic field. An 
absolute value plot is shown 
which should be compared 
with the corresponding 2D 
spectrum of Fig. 11, taken 
in a homogenous field. 

quency stability must stay within the resolution limit to 
be achieved over the entire experiment time. A com­
bination with difference frequency spectroscopy28 to 
loosen this requirement is at least not obvious. This 
means that experiments in inhomogeneous fields require 
a particularly stable field-frequency lock or a super­
conducting magnet with an inherently sufficient long­
term stability. 

A 2D FTS experiment in an inhomogeneous static 
magnetic field resembles a spin echo experiment. The 
echo envelope is modulated by the various spin-spin 
coupling constants,29 and it is the source for the so­
called J spectra. 30 They permit the determination of 
spin- spin coupling constants with high accuracy. The 
information content of 2D spectra is considerably high­
er as chemical shifts can be determined as well. 

VIII. OBSERVATION OF ZERO AND DOUBLE 
QUANTUM TRANSITIONS 

2D FTS offers a unique possibility to observe zero 
quantum (ilM = 0), 31 double quantum (ilM = ± 2), and 
multiple quantum transitions. It is kndwn that double 
quantum transitions can be observed in slow passage 
experiments when suffiCiently strong rf fields are ap­
plied. 32 They do not appear in single pulse Fourier 
experiments. 3 Zero quantum transitions can neither 
be observed with slow passage nor with conventional 
Fourier experiments. 

The condition for the occurrence of ilM = 0 or I ilM I 
2': 2 peaks in a 2D spectrum is that the density operator 
0'(0) at the beginning of the evolution period contains 
matrix elements connecting eigenvalues with ilM = 0 
or I ilMI 2': 2. These elements oscillate during the 
evolution period with zero quantum, double quantum, 
or with higher transition frequencies. Elements of this 
kind do not directly produce observable transverse 
magnetization, but it is possible to transform them into 
transverse magnetization components by means of the 
mixing pulse at f= fl' By performing a sequence of ex­
periments with various f1 values, it is possible to trace 
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out the time evolution of these unobservable matrix 
elements. 

The complex signal amplitudes Zkl,mn of the resulting 
2D spectrum can again be computed by means of Eq. 
(27). Under the assumption of weak coupling among N 
nonequivalent spins ~, one obtains in analogy to Eq. 
(51) the expression 

x[cos~O!lZN-<!.lm-<!.knO'(O)mn(M,- M k ) • (70) 

A few possibilities to prepare a state 0'(0) with ~M 

0 0 

:) . ~'(./2) 0'(0) = Rx (1T!2). 
0 P z 0 

0 0 P 3 

0 0 0 p. 

~ (p, +P, +p,+p,l i(P1 - P z +P3 - p.) 

1 i(- P1 +Pz - P3 +p.) (P1+ Pz+ Pa+ p .) 
4 

i(- P1- PZ+p3 +p.) (P1 - P z - P a +p.) 

(-P1+Pz+Pa-P4 ) i(- P1- PZ+P3+P4 ) 

Here, the ~M = 0, off-diagonal elements are O'(0)Z3 and 
o'(O)sz, the ~M= 2 element is 0'(0)14 and the ~M= - 2 ele­
ment is 0'(0)41' It is seen that these elements are dif­
ferent from zero whenever P 1 + P4 *- P z + Ps' 

To compute the time evolution during the evolution 
period, it is best to consider the system in a frame 
rotating with the carrier frequency w of the applied rf 
pulses which is also used to demodulate the received 
rf signal. Because O'r(O) = 0'(0), one obtains 

O'r(t1)kl = O'(O)kl 

X exp{- i (J<f.k - WF. kk )t1 + itlc,,- wF.,,)t1 - tt!T2kI}. 

(72) 

For the oscillation frequencies of zero and double 
quantum transitions, one finds: 

zero quantum transition: ~wo=~z - Je 33= n1 - nz , 

=0 or I~MI2:2 elements are: (1) selective 180° pulse 
on a single transition followed immediately by a non­
selective 90° pulse; (2) selective saturation of one 
transition followed by a nonselective 90° pulse; and 
(3) nonselective 90° pulse followed after a suitable 
delay T by a second nonselective 90 0 pulse. 

To see the implications of Eq. (70) more clearly, 
the weakly coupled two-spin system will be investigated 
in more detail. It is assumed that the system has been 
prepared in a nonequilibrium state of first kindzo with 
the populations Plo Pz, P 3 , and p.. A 90~ pulse at 
time t = 0 generates then the following initial density 
operator u(O): 

i(P1 +Pz- P 3 - p.) (-P1+PZ+P3-p.) 

(P1- P z - Ps+P.) i(P1 +Pz- Pa- P4 ) 

i(P1- PZ+ P3- P.) 
(71) 

(p1 +PZ+PS +P4 ) 

i(-P1+PZ-PS +P4 ) (P1 +PZ+p3+p.) 

obtains the observable magnetization which is used to 
compute a 2D spectrum with the following complex and 
real amplitudes: 

Zero quantum transition: 

and 

ZlZ,Z3 = ~Nyllsin~0![cos~0!]3O'(0)z3 , 

Z21,Z3 = - ~Nyn[sin~0!]3 [cos~0!]U(O)2a , 

A (lZ)(Z3) = iNy1ZsinO! cosO! Re {O'(O)zs} , 

B UZ )(23) = i Ny1ZsinO!Re{O'(0)z3} , 

C (lZ)(Z3) = iNy1ZSinO! cosO! 1m {a (0)23} , 

D(lZ) (23) = iNyIlSinO! 1m {O'(0)Z3} , 

with the relations 

A (13) (Z3) = - A (Z.)(23) = - A (34) (23) = A (12)(Z3) , 

(76) 

(77) 

(73) - B (3)(Z3) = B(24)(23) = - B(34)(23) = B (2 )(zs) , 
double quantum transition: ~W2 =3Cu - 3C.4 - 2w 

= n1 + n2 - 2w, (74) 

where n1 and n2 are the Larmor frequencies of the two 
nuclei. The frequency of the double quantum transition 
is independent of the spin-spin coupling constant J, 
even for strong coupling. The frequency of the zero 
quantum transition, on the other hand, is, for strong 
coupling, given by 

~wo = ..; (n1 - n2)2 + (2M)2 • (75) 

With an rf pulse with flip angle O! at time t= t1, one 

C (13) (Z3) = - C(24) (23) = - C(M) (23) = C (12) (23) , 

- D (13)(23) = D (24) (23) = - D (34)(23) = D (12) (23) 

Double quantum transition: 

and 

Z12,14 = ~Nyn[sin~O!]S [cos~O!]O'(O)14 , 

ZZl, 14 = - ~Ny1Zsin~O![cos~O!j3O'(O)14 , 

A (12)(14) = - tNyllsinO! cosO! Re{O'(O)1J , 

B(12)(24) = tNyllsinO! Re {O'(O)14} , 
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C (12)(14) = - !Nynsinacosa 1m {U(O)14} , 

D (12)(24) = !Nyn sina 1m {U(O)14} , 

with the relations 

A (13) (14) = - A(24) (14) = - A(34) (14) = A(12) (14) , 

B(13)(14) = - B(24) (14) = - B(34) (14) = B(12)(14) , 

C (13)(14) = - C (24) (14) = - C (34) (14) = C (12)(14) , 

D (13) (14) = - D (24) (14) = - D (34) (14) = D (12)(14) • 

(80) 

It is interesting to note that the oscillation frequency 
of the zero quantum transition, Eq. (75), is, to a large 
extent, independent of the magnetic field strength and 
magnetic field homogeneity and completely independent 
of the carrier frequency w. The W1 coordinate of the 
~ero quantum peaks in a 2D spectrum is therefore de­
pendent only on the inherent properties of the spin sys­
tem and not on performance conditions. 

The oscillation frequency of the double quantum 
transition, Eq. (74), on the other hand, changes with 
2w when the carrier frequency is moved. Unlike double 
quantum transitions in slow passage spectra, the double 
quantum transition in 2D spectroscopy does not occur 
in the center of the two doublets, but its position is 
strongly dependent on the carrier frequency w. 

An experimental spectrum is shown in Fig. 17. It 
is the result of a three pulse experiment. The first 
two 90° pulses with a separation of 236 ms were em­
ployed to create an initial density operator u(O) with 
.o.M = 0 and .o.M = ± 2 matrix elements. The third pulse 
at t = t1 was a mixing pulse with a = 90° 0 Zero and 
double quantum peaks have about the same intensities 
as the single quantum peaks, in this particular case. 
The relative intensities strongly depend on the separa­
tion of the first two pulses. 

IX. EXPERIMENTAL 

The experimental results presented in this paper 
have been obtained by means of a Varian DA60 high 
resolution NMR spectrometer equipped with an internal 
fluorine field-frequency lock and with pulse equipment 

o 20 

to perform Fourier experiments. The data processing 
was done on a Varian 620i computer which was inter­
faced to the spectrometer and which contained 16k core 
memory and was equipped with the usual peripherals. 

Due to the limited core memory, the data matrix had 
to be restricted to 64 x 64 accumulated samples from 64 
experiments for different pulse spacings t1• For the 
data processing, a slightly modified computer program, 
used earlier for Fourier zeugmatography, 19 was uti­
lized. For each complex 1D Fourier transformation, 
the array of 64 samples was augmented by 64 zeros33 

such that, finally, each of the four real components 
S cc, S SS, S c., and S·e was again represented by 64 x 64 
sample values. 

The phase of the 2D spectrum was adjusted by a suit­
able linear combination of Sec, S··, Se., and S·c. No 
frequency-dependent phase shift was employed. 

2D spectra were plotted either by means of a tele­
type, using a letter code to indicate signal amplitudes, 
or by means of an xy-plotter plotting parallel cross 
sections to give the impression of a 3D representation. 

It is clear that the shown experimental results are 
preliminary in many respects. The main limitation of 
the present setup is the restricted number of samples 
which can be stored in computer memory. 

There are several possibilities to solve this problem: 

(1) Partial spectra: By means of suitable 2D filtering 
procedures, it is possible to obtain partial 2D spectra . 
An example is shown in Fig. 15. 

(2) Calculation of cross sections: In many cases, it 
is sufficient to represent the 2D spectra by a set of 
parallel cross sections, e. g., through the major sig­
nal peaks. A simple possibility is to select after the 
first Fourier transformation those samples which lie 
in the center of a resonance line and to reject all other 
samples to reduce the storage and computational re­
quirements. 

(3) Use of bulk storage: The use of a disc memory 
may' permit one to record and process up to 1000 

FIG. 17. Three-pulse ex­
periment on 2, 3-dibromo­
thiophene using three 90° 
pulses. Tbe separation of 
the first and the second rf 
pulses was 236 ms. The 2D 
spectrum shows the zero (z) 
and double quantum transi­
tions (d) of the weakly 
coupled two-spin system. 
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x 1000 data matrices. 

A second limitation is the present facilities for the 
representation of 2D spectra. A considerable im­
provement of the visual impression is possible either 
with a matrix plotter or by means of a CRT display. 

X. CONCLUSIONS 

In this paper, the two-pulse version of 2D spectros­
copy has been treated in explicit detail. The general 
formalism has been formulated to permit the descrip­
tion of a much larger class of experiments. Many ex­
tensions have briefly been mentioned in Sec. II. They 
will be described in more detail in further papers. 
The experimental aspects of 2D data processing will 
also be treated at another place. 

The described experiments and the explicit calcula­
tions have been restricted to particularly Simple cases, 
to systems with weakly coupled nuclei and to the strong­
ly coupled two-spin system. For the case of three or 
more strongly coupled spins, it is convenient to take 
recourse to a numerical simulation of 2D spectra by 
means of a digital computer. 16 

2D spectroscopy fascinates by its conceptual sim­
plicity and by its general applicability. It seems to 
open one further dimension to the spectroscopist. Of 
particular interest are the possibilities to determine 
the relations between the various transitions of a spec­
trum, to measure double quantum tranSitions, to ob­
tain high- resolution spectra in inhomogeneous magnetic 
fields, and to image macroscopic objects by measuring 
the 2D or 3D spin density. Intriguing applications are 
also possible in carbon-13 resonance in liquids and in 
solids by measuring 2D-resolved carbon-13 spectra. 

The basic principles which have been exploited are 
very general and can be applied to other coherent spec­
troscopies as well. Applications are conceivable in 
electron spin resonance, nuclear quadrupole resonance, 
in microwave rotational spectroscopy, and possibly in 
laser infrared spectroscopy. 
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