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It is suggested that Fourier transformation of infrared and Raman band shapes reveals the meaning of ~he 
spectrum in terms of molecular rotation much more clearly than does the usual frequency shape. By loo~mg 
at the time dependence directly, one may separately examine the molecular motion at s?ort and long tImes 
The motion at short times may be analyzed directly in terms ~f the molec~lar dyanm!c~, ?y the use of a 
power series in the time, whereas the behavior at long time~ !s best exammed .by. statIstIcal arguments. 
This kind of analysis is illustrated by several examples, includmg the spectra of lIqUId CO and CH.. 

I. INTRODUCTION 

I NFRARED and Raman spectra of molecular solids, 
liquids and gases appear to contain considerable 

informatidn about molecular rotation in these systems. 
We may distinguish two related goals for the inter­
pretation of these spectra: The recovery of information 
from the spectra about (1) the intermolecular forces 
and torques which determine the molecular motion, 
and (2) the nature of the molecular motion itself. 
We have previously! given some attention to the first 
of these goals, and it was found that certain averages 
over the intermolecular interactions, such as the mean­
squared torque on a molecule, may be deduced directly 
from the spectral band shapes. In this paper we turn 
to the second of these goals, that of understanding as 
precisely as possible, just what a spectral band shape 
tells us about molecular motion, and, in particular, 
about molecular rotation. 

The interpretation of spectroscopic information is 
almost always based on the assignment of lines i~ a 
spectrum to transitions, induced by the measunng 
radiation between the various quantum states of the 
system. We may call this co~ventional .spe<:troscopic 
view the Schrodinger picture, smce attentIOn IS focused 
on the energy levels of the system, rather than on 
its time development. However, several circumstances 
may make this method of interpretation ~i~cult or 
impossible. (1) There may be so m~ny transItIOns that 
an assignment is difficult, or the lInes ~ay .blend to­
gether to form a continu?us. band, ,,:hlch IS usually 
the case in dense gases, hqUlds, solutIOns, and many 
solids. Then the assignment of individual transitions 
is impossible. (2) The intensity di~tribution in ~uch a 
spectrum is determined by off-dIagonal matnx ele­
ments between all the many-molecule wavefunctions 
for the system. Such matrix elements and wa~efu~c­
tions would be essentially impossible either to VIsualIze 
or to calculate. Thus there is very little interpretive 
value to this conventional "Schr6dinger picture" of 
the spectroscopy of complicated .systems. (3) A ~hird 
difficulty is that there is no claSSIcal analog of a smgle 
quantum state, so that even for systems which are 

described reasonably well by classical mechanics, the 
Schrodinger picture does not allow any classical corre-
spondence to be exploited. . . . 

The point which we wish to emphaSIze m thIS pa~er 
is that the Heisenberg picture of quantum mechamcs 
provides a powerful interpretive tool for spectra of 
complicated systems. By focusing attention on t~e 
time development of the system, rather than on ItS 
quantum states, one may avoid the thr.ee ~ifficul~ies 
which we outlined above. (1) InterpretatIOn IS pOSSIble 
in the Heisenberg picture even if lines are not re­
solved. (2) The interpretation is easily visualized in 
terms of the molecular motion in the system. (3) A 
classical correspondence exists which may be exploited 
for systems which approach classical behavior. 

The Heisenberg picture of spectroscopy leads 
naturally to the consideration of a spectrum as the 
Fourier transform of an appropriate time correlation 
function. From an interpretive point of view, the most 
important feature of this Fourier relation~hip is t~at 
it can be inverted to give the time correlatIOn functIOn 
as a Fourier integral over a complete experimental 
frequency spectrum.2 In this way the short-time and 
long-time behavior of the correlation function. are ex­
perimentally isolated and may then be dlscus~ed 
separately. It is appropriate to make such a separatIOn 
since the short-time behavior of a correlation function 
may be discussed fairly rigorously in terms of the 
dynamics of the many-molecule system. ~owever, at 
long times, the dynamics becomes too dIfficult; but 
then one may rely instead on statistical arguments to 
establish the form of the correlation functions at long 
times. By way of contrast, if one attempts to interpret 
the frequency spectrum directly, the intensity at any 
particular frequency includes contrib~tions fr?m t.he 
entire time development of a correlatIOn functIOn, m­
cluding both the short- and long-time parts. 

It is very often argued in statistical mechan!cs that 
correlation functions should decay exponentIally at 
long times. However, it is seldom possible to verify 
this exponential form experimentally, sinc~ most macro­
scopic measurements are done at essentIally zero fre­
quency (on a molecular time scale). Thus, the usual 

1 R. G. Gordon, J. Chern. Phys. 39, 2788 (1963); 40, 1973 
(1964); 41, 1819 (1964). 2 R. G. Gordon, J. Chern. Phys. 42, 3658 (1965). 
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transport measurements3 yield only the area under ap­
propriate time correlation functions, rather than their 
detailed dependence on time. Spectroscopy provides a 
welcome supplement to this information by permitting 
more detailed study of the time dependence of rotational 
correlation functions. Not only is the exponential form 
of these correlation functions verified at long times, 
but the "transient" behavior at short times is also 
observed. 

In the following sections we amplify these intro­
ductory remarks, and then consider some specific ap­
plications of these ideas to the interpretation of in­
frared and Raman spectra. 

110 INFRARED BAND SHAPES 

As a simple example of the Heisenberg picture of a 
spectrum, we consider an infrared absorption band. 
For simplicity we neglect any coupling of the internal 
vibrations of a molecule with other degrees of freedom 
of the system. Then, the usual expression for an ab­
sorption band shape, in terms of transitions between 
quantum states (Schrodinger picture) is 

( ) 
_ licO"(w+wo) 

I w =---------------------------
4?r2(w+wo) {l-exp[ -Ii (w+wo) /kT]} 

= LPi I (i I tomV If) 12«5[(Ej -Ei)/Ii-w], (ILl) 
ij 

where 0" is the absorption cross section per molecule, 
Wo is the vibrational band center, w is the frequency 
displacement from wo, Ii) and I f) are the initial and 
final quantum states for the (coupled) rotation­
translation motion of the molecules, with energy eigen­
values Ei and E" respectively. Pi is the Boltzmann 
factor for the initial rotation-translation state Ii), 
assuming that the sample is initially in thermal equilib­
rium. t is a unit vector along the electric vector of the 
incident radiation. mv is the transition dipole moment 
for the particular vibrational band v. The first step 
in transforming to the Heisenberg picture is to represent 
the «5 function by its Fourier integral 

11
00 

«5(w) = -- exp (iwt) dt. 
211" -00 

Then, 

1 
lew) = - LPi(i I tomV If) (j I tom" Ii) 

211" ij 

xL: exp[i(Ej-Ei)t/li]e-i"'ldt. (II.2) 

The energy eigenvalues Ej and Ei are now expressed 
in terms of the Hamiltonian operator H for the rota­
tion-translation motion, giving 

lew) = ~1co e-i.,IL,Pi (i I tomV I j) 
211" -00 ii 

X (j I eiHt/~tomVe-iHt/~ I i )dt. (II.3) 

a R. Zwanzig, Ann. Rev. Phys. Chern. (to be published). 

N ow the sum over the complete set of final states I f) 
may be performed: 

Since the operator (eiHtIAt·mVe-iHt/~) is the Heisenberg 
operator for the direction of transition dipole moment 
at time t, Eq. (IIA) may be written more concisely 
as 

1100 

lew) = -- e-i.,t ([t·mv(O) J[tomv(t)] )dt, (IL5) 
211" -00 

where the brackets represent an equilibrium statistical 
average 

(Op)= LPi(i I Op Ii). 
i 

For an isotropic sample, the same result is obtained 
if we average over the polarization directions t of the 
radiation, giving 

lew) = ~1°O e-i.,tt (mv(O) omv(t) )dt. 
211" -co 

(II.6) 

Finally, we convert to a spectrum normalized to unit 
area, 

lew) =l(w) Ii l(w)dw 
band 

and to a vector u=mv/ «(mv)2)1 along the direction 
of the transition dipole moment. Then Eq. (II.6) reads 

l1co 
lew) = -- e-i.,t (u(O) ou(t) )dt. 

211" -co 
(II.7) 

(Using a normalized spectrum largely eliminates 
dielectric effects on the local electric field due to 
the radiationo Only fluctuations about the average 
local field will affect the normalized spectrum.) This 
equation expresses the Heisenberg-type description of 
an infrared band shape: The distribution of absorption 
frequencies about the vibration frequency is the Fourier 
transform of the average motion of the transition dipole 
moment. The classical correspondence of this formula 
is apparent. If one calculates the motion of the dipole 
moment classically, then the Fourier transformation 
produces the classical approximation to the band shape; 
if a quantum-mechanical calculation of the motion is 
made, the true quantum spectrum is obtained. 

If an experimental spectrum extends over the entire 
range of rotation-translation frequencies about a band, 
then the inverse Fourier integral allows us to recon­
struct experimentally the average motion of the transi­
tion dipole moment: 

(u(O) ·u(t) )= r l(w)ei.,tdw. 
i band 

(II.8) 
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In this way one obtains a clear physical picture of just 
what an experimental infrared band contour can tell 
us about molecular motion. The physical meaning of 
the correlation function (u(O) ·u(t) ) (at least in the 
classical limit, where measurements do not disturb 
the system) is the following: Imagine that one could 
observe the microscopic reorientation of a single mole­
cule in a system of many molecules in thermal equilib­
rium. Suppose that at a time 0 the vibrating dipole 
of this molecule points along a direction u (0). Then 
we follow the thermal motion of the molecules and at a 
time later we measure the projection of u(t) on the 
original direction: u (0) . u (t). Now we make this meas­
urement again and again, picking out different reference 
times "0." Finally, we average all of these trajectories 
u(O) ·u(t) to obtain the correlation function 
(u(O) ·u(t) ). 

A slightly different way to view this correlation 
function is to say that it describes the decay of our 
knowledge about a system as it approaches equilibrium. 
Even if we know that a molecule points in a certain 
direction at time t= 0, after a long time it is equally 
likely to be pointing in any direction. Then our initial 
knowledge is no longer relevant. The correlation func­
tion is a quantitative statement of what average pre­
dictions may be made after a given time, using our 
initial knowledge. 

Some examples of dipole correlation functions are 
plotted in Fig. 1 for carbon monoxide. They were ob­
tained by numerical Fourier transformation of several 
experimental infrared spectra. The curves will become 
unreliable for times longer than about (1/ ~w), where 
~W is the experimental resolution. 

We have simplified the above treatment by neglect­
ing vibrational perturbations (frequency shifts). If 
we wish to include these perturbations, we must allow 
the intermolecular potential energy for a vibrationally 
excited molecule to differ from that of a molecule in 
its ground state. If we let Hv be the rotation-transla­
tion Hamiltonian for the system including the infrared­
active molecule in its vth vibrationally excited state, 
then the function whose Fourier transform gives the 
band shape is 

«( £·mv ) (eiH.t/~£·mve-iHot/~) ). (II.9) 

Only when Hv=Ho (no frequency shifts) does this 
reduce to the dipole time correlation function. Thus, 
in cases when frequency shifts are significant, the simple 
physical interpretation of the Fourier transform of the 
spectrum is obscured. This difficulty is reduced if we 
remove the mean frequency shift from the vibrational 
band origin; then only the fluctuations of the frequency 
shift distort the band shape. Generally speaking, the 
complications from frequency shifts should be more 
important for larger and heavier molecules. In addition, 
the problem of overlapping of different vibrational 
bands becomes serious for any but the simplest of 
molecules. 
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FIG. 1. CO dipole correlation functions in various environments. 
Spectra were obtained from the following references; CHC~ and 
n-C7H16, M, O. Bulanin and N. D. OrIova, Opt. i Spectros­
kopiya 15, 112 (1963) [English trans!.: Opt. Spectry. 15, 208 
(1963)]; CCL, J. Lascombe, P. V. Huong, and M. Josien, Bull. 
Soc. Chim. (France) 1959, 1175; A, R. Coulon, L. Galalry, B. 
Oksengorn, S. Robin, and B. Vodar, J. Phys. Radium 15, 58, 641 
(1954); X, CO in CHCla (liquid); 0, CO in CCI. (liquid); +, 
CO in n-C7H16 (liquid), &, CO in argon (gas, 510 amagat); El, 
CO in argon (gas, 270 amagat); --, CO in argon (gas, 66 ama­
gat); - - - -, CO free (calculated). 

III. PURE ROTATIONAL ABSORPTION 

The problem of frequency shifts in rotation-vi­
bration spectra would be avoided by studying pure 
rotational absorption in the microwave and far infrared 
region. Calculations analogous to those in the previous 
section lead to the Heisenberg picture for a pure 
rotational spectrum: 

3hcCT(W) 2.1'" e-iwt 

4rw[1-exp( -hw/kT)] 271"-00 

X[ (th(O)· tl1(t) )+ L: (tl1(0)' tli(t) )]dt, (III.1) 
i"'l 

where tli is the permanent dipole moment of the ith 
molecule. One difference in the pure rotational case 
is the presence of interference terms between different 
dipoles. Such interference terms are absent in the 
vibrational case because of the assumed lack of cou­
pling between vibrations of different molecules. Of 
course these interference terms go to zero when there 
are no interactions between dipolar molecules, as in 
the case of dilute solutions. The classical limit (hw«kT) 
of this formula has been obtained by a linear response 
calculation.4 As before, we may consider the Fourier 
inversion of this formula to obtain the correlation 

• S. GIarum, J. Chern. Phys. 33,1371 (1960). 
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function: 

(Vl(O)· Vl(t) )+ I: (Vl(O)' Viet) ) 
i"'l 

1'" . (3he) u(w)dw 
= _ooe,wt 471"2 w[l-exp( -hwlkT)]' (III.2) 

Finally there is the question of dielectric corrections 
to the local field. As in the vibration-rotation case, 
these effects are essentially eliminated by using a 
normalized spectrum. In the present case of pure 
rotational absorption, a sum rule derived previously5 
is useful: 

f.L2= 3elu(w)dw I [471"2 (TrI-u+u)], (III.3) 

where , is the reciprocal moment of inertia tensor for 
a molecule, and U= vii v I is a unit vector along the 
permanent dipole moment of a molecule. Now if we 
divide Eq. (III.2) by the sum rule [Eq. (III.3)], we 
obtain 

(Ul(O) 'Ul(t) )+ I: (U1(0) 'Ui(t) ) 
i"'l 

{ I eiwtu(w)dw } II 
= h(TrI-u·'·u) w[l-exp( -hwlkT)] u(w)dw 

(III.4) 

and any constant factors anslllg from internal field 
corrections will cancel from this equation. Unfortu­
nately, there are at present no experimental results of 
this type which span the necessary frequency range. 
Microwave measurements cover only the lower end 
of the spectrum, whereas far-infrared spectrometers 
scan the upper parts of the range. We may partially 
alleviate this difficulty by weighting the intensity 
defined in Eq. (III.l) by an additional factor of, say, 
w2• This would tend to bring the important parts of 
the spectrum more completely into the range of far­
infrared spectrometers, at least for reasonably light 
molecules. Then the Fourier inversion gives the second 
time derivative of the dipole correlation function con­
sidered above. 

IV. RAMAN BAND SHAPES 

In the Heisenberg picture of spectroscopy, a Raman 
band shape (observed by inelastic light scattering) is 
the Fourier transform of the average motion of the 
polarizability tensor of a molecule. Specifically, the 
depolarized component of a rotational Raman band 
corresponds to the correlation function 

e(t) = Tr (~1 (0) . Mt) )+ I: Tr (~l(O) . Mt) ), (IV.1) 
i"'l 

where ~i is the anisotropy of the electric polarizability 
tensor for the ith molecule, and the trace (Tr) is 
over the three spatial indices of ~. 

~ R. G. Gordon, J. Chern. Phys. 38,1724 (1963). 

Similarly, for the depolarized part of a vibration­
rotation Raman band, we must consider the correla­
tion function2 

e(t) = Tr (~v(O) • ~v(t) ), (IV.2) 

where ~v is the vibrational matrix element of the 
anisotropy of the polarizability, taken between the 
two vibrational states involved in the transition. As 
in the infrared case, interference terms between two 
different molecules occur for pure rotational bands, 
but do not occur when vibrational transitions are also 
involved. To illustrate this general fonnula for a specific 
case, a totally symmetric vibration in a symmetric­
top or a linear molecule gives a correlation function 
of the form2 ! (3[u(0) ·u(t)]2-l), where U is a unit 
vector along the axis of the molecule. Correlation 
functions of this same form are also important in the 
theory of spin-lattice relaxation.2 

V. CORRELATION FUNCTIONS AT SHORT TIMES 

The main reason for Fourier analysis of a band shape 
is so that we may consider separately the short- and 
long-time motion of the molecular system. The be­
havior of a correlation function at short times is best 
displayed by considering a power series in the time. 
For example, for a dipolar (infrared) band, if the 
correlation function is analytic in the time, then 

(u(O) .u(t) )= 2: - -(u(O) ·u(t) ) . '" tn[d
n 

] 

n=() n! dtn t=() 

(V.l) 

The time derivatives may be performed using the 
Heisenberg equation of motion 

du/dt= (ilh)[H, u], 
giving 

(u(O) ·u(t) )=:t (it)" 
n=() n!hn 

X (u (0) . [H, IH, ... [H, u (0)]- .• ]]). (V.2) 

The coefficients in this time series are identified as fre­
quency moments of the spectrum, by expanding Eq. 
(II.8) and interchanging the order of summation and 
integration: 

(u(O) ·u(t) )= leiwtl(w)dw= ~ (~~n I wnl(w)dw. 

(V.3) 
Comparing Eq. (V.2) and (V.3), we have 

M(n) = I wnl(w)dw 

=hn(u(O)'[H, [H, ···[H, u(O)]-··]]). (V.4) 

Each coefficient in the time series is an equilibrium 
property of the molecular system, and may be evaluated 
without solving any equations of motion. Some of the 
lower moments have been computed previously1 for 
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infrared and Raman bands, and therefore we may 
immediately write down the first few terms in the 
time expansion of these correlation functions. For ex­
ample, for an infrared band of a linear molecule, 
polarized along the axis, the time series in the classical 
limit, begins 

(u(O) ·u(t)= 1- (kT/I)t2 

+[t(kT /I)2+ (2412)-! «(OV)2 )Jt4+0(t6), (V.S) 

where k is Boltzmann's constant, T is the temperature, 
I is the moment of inertia, and «( 0 V) 2) is the mean­
square torque on a molecule due to the other molecules. 
As another example of the time series, we may consider 
the correlation function describing both the Raman 
band shape and some of the spin relaxation properties 
of a linear molecule.2 Using the Raman frequency 
moments computed previously,! we may write down 
the short-time behavior of this correlation function: 

~ (3[u(O) ·u(t) J2-1)= 1- (3kT /I)t2 

+[4(kT /I)2+ (8[2)-! «(OV)2 )Jt4+0(t6). (V.6) 

The first point to note is that the initial curvatures 
(second moments) of these correlation functions depend 
only on the temperature of the system and the molecular 
moment of inertia, but not on the intermolecular forces. 
This invariance occurs because the second moment is 
entirely a kinetic-energy effect, and in the classical 
limit the kinetic energy is determined by the tempera­
ture alone, through the equipartition theorem. 

The effects of intermolecular forces are first seen in 
the terms of order t4, for classical systems. The hindering 
of the rotation increases the coefficient of t4 by an 
amount proportional to the mean-square torque on a 
molecule, which is necessarily a positive quantity. 
Thus the rotational correlation function for interacting 
molecules initially lies above that of free molecules, 
and the magnitude of the deviation increases initially 
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FIG. 2. Dipole correlation functions for carbon monoxide. 
(tl(O) ·tl(t» for liquid CO computed from infrared spectra. 
X, fundamental vibration (1<--0), from infrared spectra of G. 
Ewing, J. Chern. Phys. 37, 2250 (1962). +, (first overtone, 2 ...... 0) 
and 0, (2nd overtone, 3<-0) from infrared measurements of H. 
Vu, M. R. Atwood, and B. Vodar, J. Chern. Phys. 38, 2671 
(1963) . 
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FIG. 3. Dipole correlation function (tl(O) ·-a(t» for liquid 
methane (98°K) computed from infrared data of G. E. Ewing, 
J. Chern. Phys. 40, 179 (1964). 

as t4. Therefore the actual decay of the rotational cor­
relation function for hindered rotors is slower than the 
decay for free rotors, at least in the initial period of 
decay. 

The classical invariance of the second moment pro­
vides a convenient check on the completeness of the 
frequency range of an experimental band shape. If 
the second moment is far below its classical value, 
then one may suspect that measurements were not 
carried far enough into the "wings" of the band, and 
the correlation function obtained by Fourier trans­
formation in such a case would be incorrect. On the 
other hand, if an experimental second moment con­
siderably exceeds the calculated value, then it is likely 
that the fluctuations of the vibrational frequency 
shift are a significantly broadening factor in the 
spectrum. 

The lower moments of a spectrum are simple proper­
ties! of the molecular system essentially because they 
describe the short-time behavior of the motion. On 
the other hand, if one wants to describe the time de­
velopment to longer times, many more higher moments 
are needed in the power series. These higher moments 
are naturally more complicated equilibrium properties, 
since they describe the very complicated motion at 
longer times. Thus computational difficulties limit the 
usefulness of the time expansion to the consideration 
of relatively short times. 

VI. CORRELATION FUNCTIONS AT LONG TIMES 

At long times it becomes impractical to follow the 
dynamics either analytically or numerically, due to 
the extreme complexity of the molecular trajectories . 
However, this very complexity suggests that the actual 
reorientation process may be simulated at long times 
by a stochastic (Markov) process. Then all of the cor­
relation functions should approach exponential decay 
at long times. It is very interesting, therefore, to find 
experimental rotational correlation functions that do 
indeed behave exponentially at long times (Figs. 2-4). 
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FIG. 4. P2 correlation 
function 

(P2[Ct1(O) ·t10)]) 

for liquid methane (95°K), 
computed from Raman 
band shapes obtained by 
J. H. Harrold, Ref. 11, +; 
and C. A. Plint, Ref. 12, X. 

Rotational diffusion is the most widely applied 
stochastic model for the behavior of rotational correla~ 
tion functions at long times. If the molecular reorienta~ 
tion process is simulated by random small~angle jumps, 
then the average rotational motion follows a diffusion­
type equation.6-8 The slopes at long times of the log~ 
arithm of the correlation function are then related to 
the constants in the rotational diffusion equation. The 
rotational diffusion of a linear molecule or of a spherical­
top molecule is characterized by a single rotational 
diffusion constant. This is the case for those systems 
(CO, CIL) for which appropriate spectroscopic band 
shapes have been measured. It would be interesting to 
analyze the spectra of asymmetric molecules in which 
the diffusion is characterized by a tensor/s A good 
example of this type would be ethylene, since the 
principal axes of the diffusion-constant tensor are then 
determined by the symmetry of the molecule. Then 
by studying the various infrared bands which ar~ 
polarized along the three axes of the m'olecule one 
would be able to completely determine the ~ntire 
rotational diffusion-constant tensor. 

Even in liquids, however, the rotational diffusion 
equation fails to describe one aspect of the long-time 
behavior of the experimental rotational correlation 
functions: The limiting long-time exponential curves 
do not extrapolate back to unity at time t= O. The 
extrapolated initial amplitudes are greater than unity 
for CO, and less than unity for liquid CH4• This failure 
of the. diffusion equation appears to arise mainly from 
the failure of the assumption of infinitesimal angular­
diffusion steps. 

In gases and some solutions (Fig. 1), the rotational 
correlation functions have not reached exponential 
decay even at the longest times permitted by the ex~ 
perimental resolution. In these cases, the usual small-

6 F. Perrin, J. Phys. Radium 5,497 (1934). 
7 W. H. Furry, Phys. Rev. 107, 7 (1957). 
BL. D. Favro, Phys. Rev. 119, 53 (1960). 

an?le rotational diffusion equation is quite inappro­
pnate, and one must take into account rotation through 
large angles. 

VII. DISCUSSION 

In order to illustrate further how the Heisenberg 
picture assists in the understanding of spectra, we 
consider the case of liquid methane. Infrared9 and 
Raman1o-12 spectra have been observed. Qualitative 
examination of these band contours, in the frequency 
spectrum, has led to discordant conclusions about the 
nature of molecular rotation in liquid methane. It was 
claimed that the Raman spectrum proves free rota~ 
tion,lO whereas the infrared spectrum was claimed to 
demonstrate highly hindered rotation.9 

This apparent discrepancy is resolved if we consider 
t~e Fourier transforms of these band shapes, given in 
Figs. 3 and 4. For an initial period of about 10-13 sec 
both correlation functions (solid curves) are indis~ 
tinguishable from those of the free rotational motion 
(d~shed curves). Intermolecular torques have yet to 
bUild up a measurable effect on the motion. 

In an intermediate time region, from about 1 to 
3 X 10-13 sec, the intermolecular torques produce sig­
nificant hindering of the rotation, so that the actual 
reorientation takes place more slowly than the free 
rotational motion. 

At longer times (greater than about 3X 10-13 sec) 
the rotational motion has become so complicated b~ 
the intermolecular torques, that the average correla~ 
tion is indistinguishable from that of random ex-. ' ponentlal decay (dotted curves). 

It is important to note that this time pattern of 
behavior is shown by both the infrared and Raman 
correlation functions, over the same ranges of time. 
In contrast, the frequency description of the band shape 
obscures the similarity in the meaning of the infrared 
and Raman results. Since the Raman correlation func­
tion (P2) decays faster than the infrared function 
(PI), it has fallen to a much smaller numerical value 
by the time the exponential description becomes valid. 
Therefore, the Raman frequency spectrum resembles 
the free rotational spectrum considerably more than 
the infrared one does. It is this difference which ap~ 
parently led to the difference in the interpretation of 
the inf:ared9 and Raman10 bands. It is apparent that 
the Heisenberg (time) description of band shapes re­
veals their dynamical meaning much more clearly 
than does the Schrodinger (frequency) description. 

S G. E. Ewing, J. Chem. Phys. 40, 179 (1964) 
10 B. Crawford, H. L. Welsh, and J. H. Harrold Can J Phys 

30,81 (1952). ' .. . 
11 J. H. Harrold, thesis, Toronto 1949. 
12 C. A. Plint, thesis, Toronto, 1953. 


