CHAPTER 1

ELEMENTS OF
RESONANCE

11 INTROPUCTION

Magnetic resonance is a phenomenon found in magnetic systems that possess both
magnetic moments and angular momentum. As we shall see, the term resonance
implies that we are in tune with a natural frequency of the magnetic system, in
this ease corresponding to the frequency of gyroscopic precession of the magnetic
moment in an external static magnetic field. Because of the analogy between the
characteristic frequencies of atomic spectra, and because the magnetic resonance
frequencies fall typically in the radio frequency region (for nuclear spins) or micro-
wave frequency (for electron spins), we often use the terms radio frequency or
macrowave spectroscopy.

The advantage of the resonance method is that it enables one to select out of
the total magnetic susceptibility, a particular contribution of interest—one that
may, for example, be relatively very weak. The most spectacular example is, no
doubt, the observation of the feeble nuclear paramagnetism of iron against a back-
ground of the electronic ferromagnetism. Resonance also permits the gathering of
precise, highly detailed magnetic information of a type not obtainable in other
ways.

One of the reasons for the impact of magnetic resonance on physies is its ability
to give information about processes at the atomic level. In this book we seek to
give some of the background necessary or useful to the application of magnetic
resonance to the study of solids. Most of the book will be concerned with nuclear
resonance, but the final chapters will focus on certain problems particularly impor-
tant for electron spin resonance. Many of the principles developed in the earlier
portions are, of course, equally applicable to nuclear or electron magnetic resonance.
Our object, is not to tell how to apply magnetic resonance to the study of solids.
However, the activity in magnetic resonance has proceeded at such a vigorous pace,
pouring out so many new concepts and results, that an author or lecturer faces an
enormous task in the selection of material. In this book, we shall use the study of
solids as a sort of ultimate goal that will help to delineate the topics for discussion
and from which we shall attempt to draw most of the concrete examples of the
more formal techniques.

As we remarked above, we are concerned with magnetic systems that possess
angular momentum. As examples, we have electron spins, or the nuclei of atoms.
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A system such as a nucleus may consist of many particles coupled together so that
in any given state, the nucleus possesses a total magnetic moment p and a total
angular momentum J. In fact the two vectors may be taken as parallel, so that we

can write
w="J (1)

where 7 is a scalar called the “gyromagnetic ratio.” For any given state of a
nucleus, knowledge of the wave function would in principle enable us to compute
both x and J. Hence we should find that the quantity v would vary with the state.
Such caleulations are beyond the scope of this book.

Of course, in the quantum theory, u and J are treated as (vector) operators.
The meaning of the concept of two operators being “parallel” is found by con-
sidering the matrix elements of the operators. Suppose we define a dimensionless
angular momentum operator, I, by the equation:

J =4 2)

I? then has eigenvalues I which are either integer or half-integer. Any component
of I (for example, I.) commutes with I?, so that we may specify simultaneously
eigenvalues of both I? and I,. Let us call the eigenvalues I and m, respectively.
Of course m may be any of the 27 + 1 values [, I — 1,---, — I. The meaning
of Eq. (1) is then that

(Imlpw|Im") = YH(Im|Iz Im') (3)

where u, and I.. are components of the operators u and I along the (arbitrary)
x'-direction. The validity of this equation is based on the Wigner-Eckart theo-
rem, which we shall discuss in Chapter 6.

We shall, for the remainder of this chapter, give a very brief introduction to
some of the basic facts of magnetic resonance, introducing most of the major
concepts or questions that we shall explore in later chapters.

SIMPLE RESONANCE THECRY

We shall wish, in later chapters, to consider both quantum mechanical and
classical descriptions of magnetic resonance. The classical viewpoint is particularly
helpful in discussing dynamic or fransient effects. For an introduction to resonance
phenomena, however, we consider a simple quantum mechanical deseription,

The application of a magnetic field H produces an interaction energy of the
nucleus of amount —u - H. We have, therefore, a very simple Hamiltonian:

= —u-H . (N
Taking the field to be Hg along the z-direction, we find
i = —'YﬁHQIz (2)

The eigenvalues of this Hamiltonian are simple, being only multiples (YAH o) of the
eigenvalues of I,. Therefore the allowed energies are

E=—viHm m=1I1—1--,—1I (3)

SEC. 1.2
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They are illustrated in Fig. 1.1 for the case I = 3/2, as is the case for the
nuclei of Na or Cu. The levels are equally spaced, the distance between adjacent
ones being YAH ;.

m
—3/2
Fra. 1.1. Energy levels of Eq. (3). -—1/2
1/2
3/2

One should hope to be able to detect the presence of such a set of energy levels
by some form of spectral absorption. What is needed is to have an interaction that
can cause transitions between levels. To satisfy the conservation of energy, the
intersction must be time dependent and of such an angular frequency w that

#w = AE (4)

where AF is the energy difference between the initial and final nuclear Zeeman
energies. Moreover, the interaction must have a non-vanishing matrix element
joining the initial and final states.

The coupling most commonly used to produce magnetic resonances iz an
alternating magnetic field applied perpendicular to the static field. If we write the
alternating field in terms of an amplitude HY, we get a perturbing term in the
Hamiltonian of

Hpert = —YEH T, cos wt (5)

The operator 7, has matrix elements between states m and m’, (m/|I.|m),
which vanish unless m” = m 4= 1. Consequently the allowed transitions are be-
tween levels adjacent in energy, giving

hw = AE = YhH, _ (6)

or
W == 'YHO (6&)

Note that Planck’s constant has disappeared from the resonance equation.
This fact suggests that the result is closely related to a classical picture. We shall
see, in fact, that a classical description also gives Eq. (6a). By studying the two
formulations (classical and quantum mechanical), one gains a great deal of added
insight.

From Eq. (6a) we can compute the frequency needed to observe a resonance
if we know the properties that determine v. Although such calculations are of basie
interest in the theory of nuelear structures, they would take us rather far afield.
However, a simple classical picture will enable us to make a correct order-of-
magnitude estimate of 7.

Let us compute the magnetic moment and angular momentum of a particle of
mags m and charge ¢ moving in a circular path of radius » with period 7. The
angular momentum is then

2
2mr G
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while the magnetic moment (treating the system as a current loop of area 4 carry-
ing current 7) is
p=14 (8)

Since ¢ = (e/c)(1/T), we get

(9)

7??"2
hELT

™

Comparison of the expressions for y and J therefore gives us ¥ = e¢/2me.
Besides enabling us to make an order of magnitude estimate of the expected size
of 7, for our purposes the important result of this formula is that large masses have
low ¥'s. We expect about a factor of 1,000 lower ¥ for nuclei than for electrons.
In fact, for magnetic fields of 3,000 to 10,000 gauss, electronic systems have a reso-
nance at o/2r = 10,000 Mc¢ (the 3 ¢cm microwave region), whereas nuclear sys-
tems are typically 10 Me (a radio frequency). Of course one can always change
w by changing H,, but in most cases it is advantageous to use as large a magnetic
field as possible, since the quanta absorbed are then larger and the resonance is
correspondingly stronger.

In later sections, we shall comment somewhat more on typical experimental
arrangements.

ABSORPTION OF ENERGY AND SPIN-LATTICE RELAXATION

We now wish to go a step further to consider what happens if we have a
macroscopic sample in which we observe a resonance. For simplicity we consider
a system whose nuclei possess spin 1/2 (Fig. 1-2). Since there are many nuclei
in our macroscopic sample, we shall specify the number in the two m states +1/2
and —1/2 by N and N_, respectively.

—-1/2 _ N_
Fre. 1.2, Energy levels for I = 1, YhH
+1/2 . Ny

The total number of spins, ¥, is a constant, but application of an alternating field
will cause N4 or N_ to change as a result of the transitions induced. Let us denote
the probability per second of inducing the transition of a spin with m = +1/2 to
a state m = —1/2 by W45~ We shall denote the reverse fransition by
W _y~(4+) We can then write a differential equation for the change of the popula-
tion N .
d_]d\%: = N_Wesn — NoWipaeo (1)
Without as yet attempting to compute Wy or W4y, we note a fa-
mous formula from time-dependent perturbation theory for the probability per
second, P, that an interaction V(i) induces a transition from a state (a) with
energy £, to a state (b) whose energy is Ep:

Poy— 2% 6V (0] 8(Be — Ey — hoo) @)

$EC. 1.3
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Since [(a|V|b)|2 = |(b]V]|a}|?, we note that P, is the same as the rate Py..q. Such
an argument describes many situations and leads to the condition Wy, .y =
W an = W.

dNy _

7 W(N_ — N4 (3)

1t is convenient to introduce the variable n = N4 — N_, the difference in
population of the two levels. The two variables N and N_ may be replaced by
n and N, using the equations

N = N-E— + N_
n==N,—N 4)
= N, _
N, =i+ n)
T (4a)
N_= 3N —mn)
Substitution of Eq. (4a) into Eq. (3) gives us
an
the solution of which isg
n = n(0)e 27" (6)

where n(0) is the value of nat { = 0. We note that if initially we have a population
difference, it will eventually disappear under the action of the induced transitions.

The rate of absorption of energy, dE/dt, is given by computing the number of
spins per second that go from the lower energy to the upper, and by subtracting
the number that drops down, emitting energy in the process:

B o N Who — N_Wio = Bl )

Therefore, for a net absorption of energy, n must be non-zero; that is, there
must be a population difference. We see that when the upper state is more highly
populated than the lower, the net absorption of energy is negative—the system
supplies more energy than it receives. This state of affairs is the basis of the
oscillators or amplifiers known as masers (microwave amplification by stimulated
emission of radiation).

We see that if the equations we have put down were complete, the resonant
absorption of energy would eventually stop and the resonance would disappear.
A more serious difficulty is seen if we assume W = 0 (that is, we do not apply the
alternating magnetic field). Under these circumstances our equations say that
dN ,/dt == 0. The populations cannot change. On the other hand, if we applied
a static field to a piece of unmagnetized material, we should expect it to become
magnetized. The preferential alignment of the nuclear moments parallel to the
field corresponds to N4 being greater than N _. (N_ = 0 would represent perfect
polarization, a state we should not expect to find at temperatures above absolute
zero.) The process of magnetization of an unmagnetized sample, therefore requires
a net number of transitions from the upper to the lower energy state. In the process,
the spins give up energy—there is, so to speak, a heat transfer. Therefore there
must be some other system to accept the energy. If we ask how big a population
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difference will eventually be found, the answer must depend upon the willingness
of the other system to continue accepting energy. Speaking in thermodynamie
terms, the heat flow will continue until the relative populations N_/N ;. correspond
to the temperature T of the reservoir to which the energy is given.

The final equilibrium populations, N% and N 9, are then given by

N% . ABJRT __  —vAH KT
A"W = = ¢ (8)
+
We must postulate, therefore, that there exists a mechanism for inducing
transitions between N and N ., which arises because of the coupling of the spins
to some other system. Let us denote the probability per second that such a coupling

will induce a spin transition upward in energy (from 4 — —) by W1, and the re-
verse process by Wj. Then we have a rate equation

N _

di +wai - N+WT (9)

Let us again introduce the variables N and n; but now we no longer can assume
equality of the two transition probabilities, since we know such an assumption
would not give the preference for downward transitions, which is necessary for the
establishment of the magnetization. In fact, since in the steady-state dN _/df is
zero, Eq. (9) tells us that
N Wy 10
el (10)

By using Eq. (8), we find that the ratio of W) to W7 is not unity but rather is

Wy wmyer
'f/TfT = £ (10&)

It is natural to wonder why the argument given to show the equality of
W (4y-(—y and W(_,_, (4 does not also apply here. The resolution of this paradox is
that the thermal transition requires not only a coupling but also another system in
an energy state that permits a transition. We can illustrate by assuming that the
reservoir has only two levels whose spacing is equal to that of the nuclear system.
If the nucleus and reservoir are initially in the states of Fig. 1.3a given by the

Nucleus Reservoir Nucleus Reservoir

1 —%— a DU S— e

2 H—n—

(a) (b)
Fra. 1.3. (a) A possible transition. (b) A forbidden transition.
crosses, congervation of energy is satisfied by simultaneous transitions indicated by

the arrows. The nucleus may therefore give up energy to the lattice. On the other
band, if both systems are in the upper state (Fig. 1.3b), the simultaneous transition
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cannot occur because it does not conserve energy. The rate of transition of the
nucleus will therefore depend not only on the matrix elements but also on the
probability that the reservoir will be in a state that permits the transition.

Thus, if we label the nuclear states 1 and 2 with populations Ny and N, and
label the lattice states (a) and (b) with populations N, and N3, the number of
transitions per second, such as shown in Fig. 1.3a, will be

number/sec = NiNoWip_0a (11)

where Wip—.24 is the probability per second of such a transition under the condi-
tion that the nucleus is actually in state 1 and the lattice is actually in state (b).
The steady-state condition is found by equating the rate of such transitions to the
rate of the inverse transition:

NleWm_,za = NzNaW2a:—>1b (12)

Since the quantum theory requires that Wis_,0, = Waa_.15, we see that in thermal
equilibrium,
Ny _ N (13)
N Ny
That is, the nuclear levels will have the same relative populations as do the lattice’s.
The nuclear population will therefore be in thermal equilibrium with the lattice’s.
Note, moreover, that for this simple model, we can compute Wy and Wi

WT = NGWQG—-)HJ Wl = walb—»ﬂa == NbW2a—>lb (]_4;)

so that Wy and W, are seen to be unequal.
We now leave our special model and return to Eq. (9). By making the sub-
stitutions of Bq. (4a) for N, and N_, we find

fl_? = N(W, — W1} — n(W, + Wy) (15)

which can be rewritten as
dn _ ng — n

dt T (16)
where
_ v =W 1 _
ng = N(WL - Wr) T = (W, + Wy (17)
Since the solution of Eq. (16) is
n o= ng + Ade T (18)

(where A is a constant of integration), we see that n, represents the thermal
equilibrium population difference, and 7', is & characteristic time associated with
the approach to thermal equilibrium. 7'y is called the “spin-lattice relaxation time.”
For example, if we deal with a sample that is initially unmagnetized, the magnetiza-~
tion process is described by an exponential rise to the equilibrium:

n = ng(l — e 77 (19)
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That is, Ty characterizes the time needed to magnetize an unmagnetized sample.

We may now combine the two rate equations for dn/dt, to find the combined
transition rate due to both thermal processes and transitions induced by the ap-
plied alternating field:

dn _ Ng — N
In the steady state, Eq. (20) tells us that
0
"= 14 2WT, (21)

Therefore, as long as 2W7T; « 1, n = ng, and the absorption of energy from the
alternating field does not disturb the populations much from their thermal equi-
librium values. The rate of absorption of energy dE/dt is given by

dlF w
?d—z = W == ?’Lgﬁw m

(22)

We shall gee later that W is proportional to the square of the alternating
magnetic field. Therefore Eq. (22) tells us that we can increase the power absorbed
by the nuclei by increasing the amplitude of the alternating field, as long as
2WT, « 1. However, once W is large enough so that W ~ 1/27,, this statement
is no longer true. The power absorbed levels off despite an increase in W. This
effect is called “saturation.” Provided one has enocugh information to compute W
(a situation often realized), one can measure 7'y by observing the saturation effect.

We have now seen geveral quantities that will be important in describing a
magnetic resonance. The quantity 7'; will clearly be related to the microscopic
details of both the nuclear system and the reservoir. We shall wish to consider
what mechanisms may give rise to spin-lattice relaxation, and how to compute T4
for any assumed mechanism. In the early work on nuclear resonance, it was feared
that the spin-lattice relaxation might be so slow that a population excess might not
be achieved within reasonable times. The famous Duteh physicist C. J. Gorter,
who has made so many of the important discoveries and proposals in connection
with magnetic relaxation, was the first person to look for a magnetic resonance in
bulk matter.t That he failed was probably due to his bad luck in having a sample
which was easily saturated because of its long T';.

When Pureell, Pound, and Torreytt first looked for a resonance of protons in
paraflin, they allowed the nuclei to sit in the magnetic field H for a long time before
even attempting a resonance. They used a value of alternating field sufficiently
low to allow them time to observe a resonance even though T'; were many seconds.
Their efforts, as with those of Bloch, Hansen, and Packard,§ were made inde-
pendently of Gorter’s.

We have also seen that the rate of absorption is related to the transition rate
W. An estimate of the size of the resonance absorption is basic to a decision about
whether or not a resonance might be observed. We shall wish to consider how to
calculate W. Moreover, since no resonance line is perfectly sharp, we expect that

1 C. J. Gorter and L. J. F. Broer, Physica, 9: 591 {1942).
t1 E. M, Purcell, H, C, Torrey, and R, V. Pound, Phys, Rev., 69: 37 (1946).
§ F. Bloch, W. W. Hansen, and M. Packard, Phys, Rev., 69: 127 (1046).
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the factors governing the width of the spectral line will be of interest. Closely
related is the question of what magnetic field to use in the relation w = vH,, for
the muclei are never bare. There will be magnetic fields due to electrons as well
as due to other nuclei, which must be added to the external field, These fields
produce effects of greatest interest, such as the splitting of the proton resonance
of ethyl alcohol (CH3;CH,OH) into three lines of relative intensities 3:2:1. They
are also responsible for the fact that there is a nuclear resonance in ferromagnets
even in the absence of an applied static magnetic field.
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2-1 MOTION OF ISOLATED SPINS—CLASSICAL TREATMENT

We begin our study of the basic theory with a classical description of the
motion of a spin in an external magnetic field H, assuming that H may possibly
vary with time. H will produce a torque on the magnetic moment g of amount
p X H. If we applied a magnetic field to an ordinary bar magnet, mounted with
bearings so that it could turn at will, the magnet would attempt to line up along
the direction of H. If H were constant in time and if the bearings were frictionless,
the magnet would actually oscillate about the equilibrium direction. If the bearings
were not frictionless, the oscillations would die out as the magnet gave up energy
to the bearings, until eventually it would be lined up along H.

When the magnet also possesses angular momentum, the situation is modified,
since it now acts like a gyroscope. As we shall see, in the event of frictionless
bearings, the moment would remain at fixed angle with respect to H (providing
H is constant in time), but would precess about it. The conversion of energy back
and forth between potential energy and kinetic energy would not occur. It would
still be true, however, that if the bearings possessed friction, the magnet would
eventually become parallel to a static field H. As we shall see, the friction corre-
sponds to relaxation processes such as T';.

The equation of motion of the magnet is found by equating the torque with
the rate of change of angular momentum, J.

d
'd_{ =uXxXH n
Since p = Y], we may eliminate J, getting
d,
£ =px (H) @)

This equation, which holds regardless of whether or not H is time dependent, tells
us that at any instant the changes in u are perpendicular to both p and H. Refer
to Fig. 2.1 and consider the tail of the vector p as fixed; the tip of the vector is
therefore moving out of the paper. The angle # between p and H does not change.
If H is independent of time, the vector u therefore generates a cone.
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One can proceed with the solution of Eq. (2) by standard methods of differen-
tial equations for various assumed time dependences of H. We shall find it most
useful for our future work, however, to introduce a special technique: the use of
g rotating coordinate system.

Fra. 2.1. Relation of x to H.

Consider a vector function of time F(f), which we may write in terms of its
components Fg(f), Fy(f), F.(t), along a set of rectangular coordinates. In terms of
the corresponding unit vectors i, j, and k, we have

F = iF, + jF, + kF, 3)

Ordinarily we think of i, j, and k as being constant in time, but we shall wish
to be more general. Since their lengths are fixed, they can at most rotate. We
shall assume they rotate with an instantaneous angular velocity . Then

di .
a = X1 (4:)

The time derivative of F is therefore

B _ AP, di Py g d AP d
Go g thgtig gty iy @
_ dF, | .dF, , ., dF, N
iF
_3?+QXF

where we have introduced the symbol 8F/8t, representing the time rate of change
of F with respect to the coordinate system i, j, k. For example, when 8F/8t = 0,
the components of F along i, j, and k do not change in time.

By making use of Eq. (5), we can rewrite the equation of motion of g In terms
of a coordinate system rotating with an as yet arbitrary angular velocity Q:

%+qu=uxﬁ{ ©)
Or

g

T =ux (H+0) (7)

Equation (7) tells us that the motion of g in the rotating coordinate system obeys
the same equation as in the laboratory system, provided we replace the actual
magnetic field H by an effective field H,:

H, =H+2 @®)
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We can now readily solve for the motion of p in a static fleld H = kHy by
choosing @ such that H, = 0. That is, we take Q == --vH k. Since in this ref-
erence frame 8u/8f = 0, u remains fixed with respect to i, j, and k. The motion
with respect to the laboratory is therefore that of a vector fixed in a set of axes
which themselves rotate at @ = —7vH k. In other words, g rotates at an angular
velocity @ = -—7H ¢k with respect to the laboratory. The angular frequency vHy
is called the “Larmor {requency.”

We are struck by the fact that the classical precession frequency Q is identical
in magnitude with the angular frequency needed for magnetic resonance absorp-
tion, as found by elementary quantum theory. Let us therefore look more closely
at the quantum mechanical description.

QUANTUM MECHANICAL DESCRIPTION OF SPIN IN A
STATIC FIELD

We have seen that the quantum mechanical description of a spin in a static
field gave energies in terms at the quantum number m, which was an eigenvalue
of the component. of spin, I, parallel to the static field Hy. The energies E,, were

En = —YhiHgm (1)

The corresponding eigenfunctions of the time-independent Schrédinger equation

" may then be denoted by ur,». The time-dependent solution corresponding to a

particular value of m is therefore

‘I’I,m(t) == uI,meW(i/mEmt (2)

The most general time-dependent solution W{{) is therefore

+I .
V() = D Cpthr me HOER! (3)
Me=—I

where the ¢,’s are complex constants. We may compute the expectation value of
any observable by means of ¥(t), as we can illustrate with the z-component of
magnetic moment:

ntd = [ ¥ urto ort @

We have emphasized that the expectation value of ua, (u.p will vary in time by
explicitly writing it as a function of time.
By using the fact that u, = V#il., and that ¥{f) is given by Eq. (3), we find

(e (B> = Z Vi O (! | T m) et HEm —Eu) (5)

’
0

where

(m']Ix|m) = [u?m'lei'Inl dr (6)

f We write a variable of integration dr in the expression for the expectation value, in analogy
to that which we would do for a spatial coordinate z, ¥, 2 or angular coordinates #, ¢. For spin,
the notation is to be thought of as a symbolic representation of the scalar produst of the two
functions ¥(t) and w.¥(f).
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is a time-independent matrix element. Expressions similar to Eq. (5) would hold
for any operator. We note that the expectation value will in general be time
dependent, will consist of a number of terms oscillating harmonically, and that the
possible {requencies

En — Ep,
- ™

are just those which correspond to the frequency of absorption or emission between
states m and m’. Of course it was the assumption that observable properties of any
gquantum system had to be given by expressions such as Eq. (5), which was the
basis of Heisenberg and Born’s formulation of the quantum theory in matrix form.

Since matrix elements (m’|I./m) vanish unless m’ = m = 1, we see that all
the terms of Eq. (5) have an angular frequency of either +YHy or —YH,. Their
sum must also contain just YH,. The expectation value <u.(¢)> therefore oscillates
in time at the classical precession frequency.

It is convenient at this point to introduce the famous raising and lowering
operators I and I~, defined by the equations

=1, +iI,

(8)
I~ =1, — i,
We may express I, or I, in terms of /™ and I~ by solving Eq. (8), getting
Io= 5"+ 1]
€))
1 —
I, = o7 [I+ — I}

The operators are called “raising” or “lowering” because of the effect they
produce when they operate on a function wur,,:

Iup o= VI(IT + 1) — m{m -+ 1) 47 a1
(10)

I_ul',m - \/I(I + 1) — m(m — 1) Ur,m—1

I turns uz ., into a function whose m value has been raised by one unit. We see,
therefore, that (m’|IT[m) vanishes unless m’ = m -~ 1, while (m/[I7|m) vanishes
unless m’ = m — 1. Van Vieck has characterized these as “sharper” selection
rules than those of the operators I, or I, which may join a state wr , with either -
Urm41 OF UL, mi.

In order to gain further insight into the physical significance of the general
expression for {u.()>, Eq. (5), we now consider the form it takes for a spin of 3.
By using the fact that the diagonal matrix elements of I, vanish, we get

o — iyl

CuaE)y = Thiey ae12(3 L] —Fe 008 (1
S ARTIIVICEE 1V MESTadehly

It is convenient to define a quantity we = YH,o. As we have seen, wq is the angular

frequency we must apply to produce resonance and is also the classical precession

frequency. By utilizing the fact that (%/1;]—%) is the complex conjugate of
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(—3%|1,1%), and using the symbol “Re” for “take the real part of,” we get

(a()> = 2¥kRe[erj20—172(3 Ll —F)e ™™ (12)

We evaluate the matrix element by means of Eqgs. (9) and (10}, getting
It is convenient at this point to express the ¢’s in terms of two real, positive

guantities @ and b, and two other real quantities (which may be positive or nega-
tive) o and 8:

_ fa
Cijz = 4ae (13)

¢z = be”
The normalization of the wave function gives us a® + b2 = 1. These give us

Lur(t)> = vhab cos(a — 8 -+ wyl) (14a)

Similarly we find
(> = —hab sinx — B -+ wo)

a? — b2
we(t)> = T1h (——*g—-“
We note that both {u,> and {u,> oscillate in time at the Larmor frequency

YH, but that {u, is independent of time. Moreover the maximum amplitudes of
{uzy and {u,> are the same. If we define

(14b)

= iugy + §uy) + Bluzy (15)

and utilize the fact that {(u.>* -+ <u,>? = constant, a fact readily verified from
Eq. (14), we see that {u> behaves as does a vector making a fixed angle with the
z-direction, precessing in the z-y plane.

F1g. 2.2, Relationship
of the eomponents 4.,
Ay and 4, of a vector A
to the polar angles 8, ¢,
and the magnitude 4.

In terms of polar coordinates 8, ¢, (see Fig. 2.2}, any vector A may be written as
Ay, = Asin 0 cos ¢
A, = Asinfsin ¢ (16)
A, = Acost

sEC, 2.2

By

pr

[ P = B = sl W I
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By means of algebraic manipulation one can show that

(12) gy = szb sin ¢ cos ¢
, getting
, positive W = 7_271 i oen ¢ o
or nega- > = :%}_i cos 6
(13) provided
¢ =8 — a— wg
give us 2 _ L+cosd e (18)
(14a) 2 . :

One may look on Eq. (18) as a formal change of variables, of course, but the

results of Eq. (17) tell us that there is a simple physical significance; the expectation
(14b) value of the operator u acts as does a vector of length v4/2, whose direction is given
by the spherical coordinates 8, ¢. If the orientation is specified at any time, it can
be found at future times by recognizing that it precesses at angular velocity wg in
the negative ¢ direction. The orientation may be specified quite arbitrarily (by
specifying @ or b and 8 — «). We emphasize that an arbitrary orientation can be
specified, since sometimes the belief is erroncously held that spins may only be
found pointing either parallel or antiparallel to the quantizing field. One of the

requency
litudes of

(15) beauties of the quantum theory is that it contains features of both discreteness and
continuity. In terms of the two quantum states with m = =% we can describe an

ﬁe@ from expectation value of magnetization which may go all the way from parallel to
with the antiparallel, including all values in between. Thus a wave function with a = b has

an expectation value corresponding to a magnetization lying somewhere in the
z-y plane (that is, with vanishing z-component). Just where in the plane it points
is given by the complex phase & — 8, as well as the time at which we wish to know

the orientation,
It is useful to consider briefly what we should expeet for the wave function if
we took a sample of many non-interacting spins which were in thermal equilibrium.
There will be a wave function for each spin, but in general it will not be in one of
the eigenstates (m = -3 or m = —3%); rather it will be in some linear combina-
tion. For a given spin, there will be a particular set of values for a, b, a, 3. The
values will differ from spin to spin. For example, we have a distribution of the quan-
tity @ — 8 that gives the spin orientation in the z-y plane at ¢ = 0. If the spins
are in thermal equilibrium, the expectation value of the total magnetization must
be parallel to the magnetic field. We expect, therefore, that there will be no
preference for any one value of « — 8 over any other. That is, the spins will have
a random distribution of @ — 8. On the other hand, since the spins will be polar-
ized to some extent, we expect to find ¢ larger than b more often than b is larger
yritten as than a. That is, the average value of @ must be larger than the average value of .
Since an observable quantity can be expressed in the form of Eq. (5), we see that
we can specify either the individual ¢,’s or the complex products ¢y-¢,,, which we

(16) shall label P,,,, for convenience.

"
Prm' = tm'Cm
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For our example: 2
Pijp12 =@

2
P_ i —1j2= 0
Pijz —1j2 = abe” P
P_ijz 172 = abe™*™®

We may consider the P,...'s to be the elements of a complex matrix P. Notice
that the diagonal elements (m = m') give the probabilities of occupation of the
various states, while the off-diagonal elements are closely related to the components
of magnetic moment perpendicular to the static field. We shall make use in a subse-
guent section of the average of the matrix P over a statistical ensemble. The state-
ment that in thermal equilibrium the magnetization will be parailel to the field
amounts to saying that the average over the ensemble of P,  for m’ = m is zero,
whereas the average for m = m' is the Boltzmann factor describing the probability
of finding the state occupied.

(Of course, in the quantum theory, even for a number of spins with identical
wave functions, any experiment that counts the number of spins in the various
m states will find a statistical distribution not related, however, to temperature.)

EQUATIONS OF MOTION OF THE EXPECTATION VALUE

The close correspondence of the classical and quantum mechanical treatments
is made particularly clear by examination of a differential equation relating the
time variations of the expectation values {u.», {uy>, and (u,>. The equation is
based on a well-known formula whose derivation we sketch.
Suppose we have a pair of wave functions ¥(¢) and ®(¢), both of which are
solutions of the same Schrédinger equation:
h a¥ #i 0P

Let us have some operator F that has no explicit time dependence. Then

% 8" F¥ dr = f @"(5eF — Fic)¥ dr @
This equation is readily derived from the fact that
d * . ad" / ®, OF

into which we substitute expressions for the time derivative taken from Hq. (M.t

It is convenient to write Eq. (2) in operator form. There is no problem with
the right-hand side: It is simply (¢/%)(3CF — F3C). For the left-hand side we must
define some new notation. We define the operator dF/dt by the equation

fcp* Ty dr = % B*F¥ dr @

t To prove Eq. (2), one must use the fact that JC is an Hermitian operator. (See discussion
in Bection 2.5.}
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That is to say, d#/dt does nol mean to take the derivative of F with respect to ¢.
Such a derivative vanishes, since /' does not contain the variable t. Rather dF /di
is a symbol that has the meaning of Eq. (4). By using dF /dt in this symbolic sense,
we have

dF

7
=l ®)

where [5¢, I] is the usual commutator JCF — Fi¢. We may use this formalism to
compute the time derivative of the expectation values of ug, iy, and u,. We define
the z-, y-, 2-axes as being fixed in space but with the z-axis coinciding at an instant
with the direction of the magnetic field. (In this way we include both static and
time-varying fields.) Then

30 == —YhHI, (6)

We shall wish to use the commutation relations for the components of angular
momentum, all of which may be obtained by eyclic permutation from

(I, I = il, ')
Then
dl 1
wr ~x [a¢, 1]
= —YHyill,, 1] (82)
= YHqI,
Similarly,
W —vH, I,
(8h)
dl,
di 0

These equations are the component equations of the vector operator equation

dl
s 9
= = IxH (9)
where
a_ .al,  .dly  , dl,
gt Tig TRy (10

Therefore, since mw = vAl, we have the equation for the expectation value of
magnetization,

Kt — Gy x v (1)
which is just the classical equation. In words, Eq. (11) tells us that the expectation
value of the magnetic moment obeys the classical equation of motion. Equation (11)
was derived for the expectation value of a magnetic moment of a single spin. If
we have a group of spins with moments uy, for the kth spin, their total magnetic

moment w is defined as
» = Z B (12)
¥
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If the spins do not interact with one another, it is easy to prove that Eq. (11) alsc
holds true for the expectation value of the total magnetization. Sinee, in practice
we measure the results of a2 number of spins simultaneously, the experimental
measurements of magnetization measure the expectation value of the various com-
ponents of magnetization. That is, the experimentally determined bulk magnetiza-
tion is simply the expectation value of the total magnetic moment. Therefore the
classical equation correctly describes the dynamies of the magnetization, provided
the spins may be thought of as not interacting with one another.

It is important to bear in mind that #q. (11) holds true for a time dependent H,
not simply a static one. Therelore it enables us to use a classical picture for studying
the effects produced by alternating magnetic fields. We turn to that in the next
section.

EFFECT OF ALTERNATING MAGNETIC FIELDS

The effect of an alternating magnetic field H.(f) = H.q cos wi is most readily
analyzed by breaking it into two rotating components, each of amplitude I, one
rotating clockwise and the other counterclockwise.

F16. 2.3. Decomposition
of a linear oscillating
field into two rotating
elements.

We denote the rotating fields by Hz and Hy.:

Hgr = H,[icoswt + jsin wi] (1)

Hjy = Hl[iCOS wl — jsin wt}

Note that Hy, and Hp differ simply by a replacement of w by —w. Since one
component will rotate in the same sense as the precession of the moment, and the
other in the opposite sense, one can show that near resonance the counter-rotating
component may be neglected. We shall make that approximation in what follows.
Alternatively we can assume that we are finding the exact solution of a problem
in which the experimental arrangement has produced a rotating field; for example,
by use of two identical coils at right angles to each other and with alternating cur-
rents 90 degrees out of phase,

We shall assume we have only the field Hg, but this is no loss in generality
because the use of a negative w will convert it to Hz. In order to reserve the symbol
w for a positive quantity, we shall introduce the symbol w,, the component of w
along the z-axis. w, may therefore be positive or negative. We may, therefore
write

H; = H,[icos w.t -} sin w,i] (2)

which will give us either sense of rotation, depending on the sign of w,.

SEC. 2.4
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We now ask for the equation of motion of a spin including the effects both

of H, () and of the static field Hy = ki .
dy

7 =X v[Ho + Hi ()] (3)
The time dependence of H; can be eliminated by using a coordinate system that
rotates about the z-direction at frequency w,. Insucha coordinate system, H; will
be static. Since the axis of rotation coincides with the direction of Hp, H will also
be static. Let us take the z-axis in the rotating frame along H,. Then Eq. (3)

becomes 8
= uX lk(w, + 7Ho) +VH] (48)
Notice that we have encountered two effects in making the transformation of
BEq. (3) to Eq. (4). The first is associated with the derivative of the rotating unit
vectors and gives the term w,. The second is associated with expressing the vectors
H, and H, in terms of their components in the rotating system and gives rise to
the conversion of H, from a rotating to a static field. Eq. (4) may be rewritten to
emphasize that near resonance w; + YHo 22 0, by setting w, = ~—w, where w is
now positive (we assume here that 7 is positive). Then

B T[(Ho _ %)H Hli]
(4b)
= pm X Heff
where

Hy =k (Ho — %) + Hi

Physically Eq. (4b) states that in the rotating frame, the moment acts as though
it experienced effectively a static magnetic field Hes. The moment therefore pre-
cesses in & cone of fixed angle about the direction of Hes at angular frequency
vH . The situation is illustrated in Fig. 2.4 for a magnetic moment which, at
t = 0, was oriented along the z-direction.

H, x
()

Fia. 2.4. (a) Effective field. (b) Motion of the moment 4 in the
rotating coordinate system.

We notice that the motion of the moment is periodic. If it is initially oriented
along the z-direction, it periodically returns to that direction. As it increases its
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angle with the z-direction, its magnetic potential energy in the laboratory reference
system changes (in the laboratory system the magnetic energy with respeet to Hy
is much larger than that with respect to H;, <o we customarily neglect the latter).
However, all the energy it takes to tilt g away from Hg is returned in a complete
eyele of m around the cone. There is no net absorption of energy from the alter-
nating field but rather alternately receiving and returning of energy.

Note that if H is above resonance (that is, Hy > w/7), the effective field has
a positive z-component, but when H, lies below the resonance (Ho < w/7), the
effective field has a negative z-component.

If the resonance condition is fulfilled exactly (w = vH,), the effective field is
then simply iH;. A magnetic moment that is parallel to the static field initially
will then precess in the y-z plane. That is, it will precess but remaining always
perpendicular to H,. Periodically it will be lined up opposed to Hy. If we were o
turn on H, for a short time {that is, apply a wave train of duration ¢,)), the moment
would precess through an angle 8 == YHt,. If ¢, were chosen such that 6§ = ,
the pulse would simply invert the moment. Such a pulse is referred to in the litera-
ture as a “180 degree pulse.” If § = /2 (90 degree pulse), the magnetic moment
ig turned from the z-direction to the y-direction. Following the turn-off of H,, the
moment would then remain at rest in the rotating frame, and hence precess in the
laboratory, pointing normal to the static field.

These remarks suggest a very simple method of observing magnetic resonance,
illustrated in Fig. 2.5. We put a sample of material we wish to study in a coil,
the axis of which is oriented perpendicular to Hy. In thermal equilibrium there

() (c)

Fra. 2.5. (a) Ceil containing sample. In thermal equilibrium an
excess of moments is parallel to Hy. (b) and (c¢) Following a
90-degree pulse, the excess moments precess perpendicular to Ho.

will be an excess of moments pointing along H,. Application of an alternating volt-
age to the coil produces an alternating magnetic field perpendicular to Hy. By
properly adjusting H, and ¢, we may apply a 90 degree pulse. Following the pulse,
the excess magnetization will be perpendicular to Hy and will precess at angular
frequency 7H . As a result, the moments will produce a flux through the eoil which
will alternate as the spins precess. The resultant induced emf may be observed.

What we have suggested so far would indicate that the induced emf would
persist indefinitely, but in practice, the interactions of the spins with their sur-
roundings cause a decay. The decay may last in liquids for many milliseconds, but
in solids it is more typically 100 usec. Even during that short time, however, there
are many precession periods. The technique we have described of observing the
“free induction decay” (that is, decay “free” of Hy) is a commonly used technique
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for observing resonances, It has the great virtue of enabling one to study the
resonance signal in the absence of the voltages needed to produce 7. Since oscilla-
tors always generate noise, such a scheme may be advantageous.

One interesting application of the rotating reference frame is to prove the
following theorem, which is the basis of another technique for producing resonance
signals. Suppose we have a magnetic field Hy of fixed magnitude whose direction
we may vary (no other magnetic field is present). Let the magnetization M be
parallel to Hy at ¢ = 0. We may describe the changing direction of Hy by an
angular velocity w. Then the theorem states that if

YHo 3> w

the magnetization M will turn with Hy, always remaining aligned along Hy as
H; furns.

zZ

Fra. 2.6. Magnetic field
Ho, magnetization M, and
angular velocity wat £ = O,

To prove this theorem, let us assume w to be a constant in the z-direction.
We can take it perpendicular to Hy, since a component parallel to Hy produces no

o
~

X

Fia. 27 Magnetization M and effective field Hy; in the rotating
coord'ma.te system z, v, 2. The magnetization will precess about the
effective field in the cone of angle 6 shown.
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effect. The relationships are shown in Fig. 2.6 at ¢ = 0, with M and H, taken
parallel to each other and pointing in the X-direction in the laboratory. If we
choose a reference frame z, y, 2 rotating at angular velcoity Qr = w, Hy appears
static, but we must add an effective field Qr/v. Choosing the z- and Z-axes as
parallel, and z to coincide with X at ¢ = 0, the effective fields and magnetization
at { = 0 are shown in Fig. 2.7.

The effective field in the rotating frame is static and given by

£
Hey = Hy + —.Y—R
= Ho +
M will precess about H,g, making an angle 8 such that

w
tan 6 = Y 6)

_ M will therefore remain within an angle 26 of Hy. We see that if w/vYH, < 1,
M and H; remain parallel.

The fact that the magnetization follows the direction of the magnetic field
when the field changes direction sufficiently slowly is described by the term
adiabatic.

By utilizing this principle, one can turn to the case of a rotating magnetic
field H, of frequency w, perpendicular to a static field Hy. If one starts far below
resonance, the magnetization is nearly paraliel o the effective field in the rotating
frame, v/H? + [(w/Y) — Hy]®>. As one approaches resonance, both magnitude
and direction of the effective field change, but if resonance is approached suffi-
ciently slowly, M will remain parallel to Heg in the rotating frame according to
the theorem we have just proved. Thus, exactly at resonance, the magnetization
will lie along H;, making a 90 degree angle with H, (Fig. 2.8).

M
(@) T, () > H

Fra. 2.8. {a) Magnetization M and effective field H.g in the rotat-
ing frame, with M paralle] to Hese. (D) The situation exactly at reso-
nance, having approached resonanee slowly, with M parallel to Hp
when Hg was far above resonance,

If one were to continue on through the resonance, the magnetization would
end up by pointing in the negative z-direction. This technique of inverting M is
very useful experimentally and is called “adiabatic inversion.”
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EXPONENTIAL OPERATORS

2.5 EXPONENTIAL OPERATORS

It will be useful to consider the quantum mechanical equivalent of the rotating
coordinate transformation, but to do so, we shall need to employ several useful
relations. We review them here for the convenience of the reader.

Suppose we have two wave functions, ® and ¥, that satisfy appropriate
boundary conditions and have other satisfactory properties for some region of
space, and suppose we have an operator F. F may be, for example, a component
of spin. The operator is said to be Hermitian when

/ O FV dr = f (F&)* ¥ dr (1)

where the integrals are over the region of space designated. To prove that an oper-
ator iz Hermitian requires some statement about the conditions ¥ and @ are to
satisfy, as well as a definition of the region. For example, if /' is an operator involv-
ing derivatives, the proof that it is Hermitian may involve transforming the volume
integral to a surface integral and requiring the integrand of the surface integral
to vanish on the surface of the region.

Hermitian operators are important because their expectation values and
eigenvalues are real. Therefore any operator that corresponds to a physically ob-
servable quantity must be Hermitian. Thus the operators [, I,, and I, are
Hermitian. If they are Hermitian, it is easy to show from Eq. (1) that the oper-
ators IT = [, +¢I,and [~ = [, — 41, are not.

In the theory of functions, it is useful to define the exponential function of the
complex variable z:

1+z+2,+ -

the power series converging for all .
We define the function

—1rel + +---

similarly, where F is now an operator. We shall be particularly interested in the

function

SR NS /R @
By using the series expansion, one can show that if F is Hermitian, e** is not.
In fact

/(G’Fé) Tdr = [ *e iy gr 3)

The exponential function of operators obeys some of the same algebra as does the
function of ordinary number, but as usual with operators, care must be taken
whenever two non-commuting operators are encountered. Thus, if A and B are
two operators, one can verify by means of the series expansion that
¢4

Al = (4a)
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only if 4 and B commute. Likewise,
e'i{A-I-B) - eiAe'EB (4b)

only if A and B commute.
If A and B do not commute, another useful equation may still hold. Let us
define €' as the commutator of A and B:

(ArB] = AB — BA =

Suppose that (' commutes with both 4 and B:

[4,0] =0
(B, (] = 0
Then
e{A+B) — eAeBE-—C',fz — 30"2333‘4

This theorem is proved in Appendix A.

Use of the exponential funection provides a particularly simple method for
obtaining a formal solution of Schrédinger’s equation if the Hamiltonian does not
depend explicitly on time. That is, if ¥(¢) is the solution of

R0

7 o = J¥ () (5)

then we can express ¥{¢) in terms of its value at ¢ = 0, ¥(0), by the equation

F(l) = ¢~ M) (6)
Equation {6) may be verified by direct substitution into Eguation (5). If, for
example, we consider the motion of & spin in a magnetic field so that 3 = —viH 1.
V() = e—(i.’ﬁ)(—-—vﬁﬂnfz) t‘I’(O) (7

. eiwot_[z‘lr(o)

where wy = YHj.

We know that Hy produces a rotation of the magnetic moment at anguolar
velocity Q given by @ = —7YH k. We shall call such a rotation “negative,” since
the component, of angular velocity along the z-axis is negative. It is logical to
suppose, then, that ¥(2) must correspond to the function ¥(0), referred, however,
to axes rotated in the negative direction through an angle wqt. Thus e =¥ (0)
should correspond to a function identical to ¥(0) referred to axes rotated through
the positive angle ¢. If we compute the expectation value or matrix elements of,
for example, 1., we find

f V(I dr = / (™ g (0)) * T ™ =9 (0) dr
= [ ¥ (0)e 0 Lo o™ g (0) dr (8a)

_ f ¥ (0) L () T (0) dr

-]
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where . '
Im’(t) = e‘—-'wotIz [xe‘lwutfz (Sb)

The last line defines the operator I... We can give a simple interpretation of
Fq. (8) as follows:

The first integral, which gives {I.(£)>, corresponds to a precessing angular
momentum arising from the effect on a time-independent operator I of a time-
dependent function ¥(t). The last integral describes the effect on a time-dependent
operator (1) of a wave function ¥(0), which is independent of time. Since the
precession is in the negative sense, the first integral involves a fixed operator and
4 wave function fixed with respect to axes that rotate in the negative sense. There-
fore the last integral must describe an operator rotating in the positive sense with
respect to the “fixed” wave funection ¥(0).

It is a simple matter to show that I.- is related to [, through a rotation of
axes. Let us consider

e—t'Iz¢$Ime1.'Iz¢ — f(‘f-’) ‘ (9)

We wish to find f(¢), to see what meaning we can aseribe to it. Of course we eould
simply expand the exponentials, and using the commutation laws, try to reduce
the function to something tractable. A simpler method is to show first that f(¢)
satisfies a simple differential equation and then solve the equation. We have

o — L L) (10)

But, since [I., 5] = i1y,

g{g = ¢~ et (11)
Likewise
d&°f e, : il,%
prehe e (=il 0y 4 2,0 e (12)
il il &f
= —e (I5)e"* = —f or Py +/=0
Therefore

fl¢) = Acos¢ -- Bsin ¢

where we must evaluate the constants of integrations. (As we shall see, the “con-
stants” are actually operators.) Clearly, 4 = f(0), but from Eq. (9), f(0) = I..

Tra, 2.9. Relation of axes
2, i to z’, ¥’ and the angle

¢.
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Likewise, B = f{0) = I,, using Eq. (11). In this way we get
Iy = e T2 e" = I, cos ¢ + I, sin ¢

— 1, s8in ¢ + I,cos ¢ {13)

Iy=e"?Le" = I,

I,y = e T et

I

The quantities I, I, and I.- are clearly the components of angular momentum
along a set of axes 2/, ¥/, 2’ rotated with respect to z, y, 2, as shown in Fig. 2.9.
Therefore we see that we can use the exponential operator ¢”:* to generate
rotations.

2.6 QUANTUM MECHANICAL TREATMENT OF A ROTATING

MAGNETIC FIELD

We shall now use the exponential operators to perform the quantum mechan-
ical equivalent of the classical “rotating coordinate” transformation. We shall
consider a magnetic field H, which rotates at angular velocity w,, in addition to
the statie field kH,. The total field H(?) is then

H(l) = iH; cos wyt -+ jH1 sin w,t - kH I
and the Schrodinger equation

w% %\P}- = —u-HY = —vh|Hol, + H{(I;cos w,t -+ I, sin w,t)]¥ 2)

By using Eq. (13) of the preceding section, we can write the Hamiltonian of
Eqg. (2) as . ‘

3 = —Vh{Hol, 4 Hie~ ™ e 6™ (3)

We are tempted to try to “remove” the operator ez from I, and transfer it
onto ¥, much as the reverse of the steps of Eq. (8) of the preceding section. Ac-
cordingly we let

U = o™ty (4)
or

T = e—'iwztIz‘I,f

The physical interpretation of Eq. (4) is that ¥ and ¥’ differ by a rotation of axes
through an angle w.t (a rotating coordinate transformation).
Then
v

et £, é\_I_]_’
ot

—dw ey | e -

6

We may substitute Eqs. (4) and (5) into Eq. (3), multiply both sides from the left
by e*:*!:, and obtain
!
—5 oy = —Wlw. + YHo): YRH L% (6)

In Eq. (8) the time dependence of H; (¢) has been eliminated. In fact we recognize
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it as representing the coupling of the spins with an effective sfatic field
W, .
k( Hy - > +iH,

the effective field of our classical equations. The spins are therefore quantized along
the effective field in the rotating coordinate system, the energy spacing being
YHH et :

The wave function ¥’ given by Hq. {(4) is related to the function ¥ by a coordi-
nate rotation, the “forward” motion of I, relative to a stationary ¥ having been
replaced by a stationary I, and “backward” rotating ¥'. As usual, resonance
occurs when w, = —YH,. If we define the transformed Hamiltonian 3¢ by

5¢/ = —[(hw, + YhH), + YRH I,] (7)
we can formally solve Eq. (6):
V() = M (0) (8a)
whence, using Eq. (4), . s
‘I’(t) — e—mztlze—(ﬁﬁ)f}c t‘I”(O) (Bb)

[Note that at ¢t = 0, ¥(0) = ¥'(0).]

Equation (8b) gives us a particularly compact way to express the solution of
Schrédinger’s equation when a rotating field is present.

We can illustrate the use of the wave function of Eq. (8b) by computing the
time dependence of the expectation value of u,. Of course we know already what
the result must be, since we have proved that the classical picture applies. Let us
for simplicity assume that H, is applied exactly at resonance. Then, from Eq. (7),

50! = —VEH I, (9)

Then we have, using Eqs. (8b) and (9),

Cpe(B)) == f V(O p¥(t) dr

(10)
— ,Yﬁ/(e—-?'wztfze+'f‘)'HIIgt\I’(O))*Iz(e...fm-tfz e+‘f'}‘H1II£\I’(O)) dr
If we define w;,
Wy = 7H1 (1}.)
and use the fact that I, and I, are Hermitian, we get
<,u-z(t)> o ,\’,ﬁ[‘P*(O)ew—t}‘nir;pel'wgf—IzIze—z‘wztfze1'w1 !IT\P—(O) d,r
(12)

= h ] T (0)e o] o W1 ey (0) dr

By using Eq. (13) of Section 2.6, we can write

g~ totley pluntls — I, sin wit 4+ I, cos wyt (13)
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Substituting in Eq. (12) we get

Spa(t)y = —<py(0)7 sin wrf -+ (u2(0)) cos wyt (14)

If the magnetization lies along the z-axis at { = 0 so that {u,(0)> = 0, we get

{p=(0)> = <u:{0)) cos YHq! (15)

Thus the z-magnetization oscillates in time at YHy, corresponding to the precession
of <u> about H, in the rotating reference frame. It is important to note that in
this picture, which neglects all interactions of spins with one another or the lattice,
the magnetization continues oscillating between -+{u,(0)> and —<{u.(0)> indefi-
nitely. This behavior is very different from that which we should expect from a
time-independent transition probability such as we assumed in Chapter 1. The
time-independent transitions oceur only if some physical process spoils the co-
herent precession about H in the rotating reference frame.

BLOCH EQUATIONS

Both quantum mechanical and classical descriptions of the motion of non-
interacting spins have in common a periodic motion of the magnefization in the
rotating frame. For example, if YH, == w and if the magnetization is parallel to
the static field at ¢ = 0, the magnetization precesses around H, in the rotating
frame, becoming alternately parallel and antiparalle! to the direction of the static
field. Viewed from the laboratory frame, the magnetization is continuocusly
changing its orientation with respect to the large static field. However, the energy
that must be supplied to turn the spins from parallel to antiparallel to the static
field is recovered as the spins return to being parallel to the static field. Thus there
is no cumulative absorption over long times but rather an alternate absorption and
recovery. The situation is reminiscent of that we described in the first chapter
prior to introduction of the coupling to a thermal reservoir. (We note that there
the system, however, simply equalized populations, whereas our present model
predicts an alternating reversal of populations. The two models must therefore be
based on differing assumptions.)

Without contact to a reservoir, we have no mechanism for the establishment
of the magnetization. By analogy to the equation

dn _ ng — m

and recognizing that M, = Yhn/2, we expect that it would be reasonable for M, to
be established according to the equation

M, Mo, — M,
dt Ty @)

where M, is the thermal equilibrium magnetization. In terms of the static magnetic
susceptibility X and the static magnetic field Hq, we have

My = XgH, (3)
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We combine Eq. (2) with the equation for the driving of M by the torque to get

dM, Mo — M,
= T M X H), (4)

rurthermore we wish fo express the fact that in thermal equilibrium under a static
field, the magnetization will wish to be parallel to Hy. That is, the z- and y-
components must have a tendency to vanish. Thus

dz{‘”’ = Y(M X H); — %{ﬁ
) (5)

dM, M,

= YM X H), — 7

We have here introduced the same relaxation time 7'5 for the z- and y-directions,
but have implied that it is different from 7';. That the transverse rate of decay
may differ from the longitudinal is reasonable if we recall that, in contrast to the
tongitudinal deeay, the transverse decay conserves energy in the static field.
Therefore there is no necessity for transfer of energy toa reservoir for the transverse
decay. (This statement is not strictly true and gives rise to important effects when
saturating resonances in solids, as has been described by Redfield.)

On the other hand, the postulate of the particular (exponential) form of re-
laxation we have assumed must be viewed as being rather arbitrary. It provides
a most useful postulate to describe certain important effects, but must not be taken
too literally. According to Eq. (5), under the influence of a static field the trans-
verse components would decay with a simple exponential. (This result is readily
seen by transforming to a frame rotating at YH,, where the effective field
vanishes.)

A possible simple mechanism for T’z for a solid in which each nucleus has
nearby neighbors arises from the spread in precession rates produced by the mag-
netic field that one nucleus produces at another. If the nearest neighbor distance
is r, we expect a typical nucleus to experience a local field Hige ~ p/r® (due to the
neighbors) either aiding or opposing the static field. Asa result, if all nuclei were
precessing in phase at ¢t = 0, they would get out of step. In a time 7 such that
YHoeT == 1, there would be significant dephasing, and the vector sum of the
moments would have thus diminished significantly. Since 7 must therefore be com-
parable to 7’5, a rough estimate for 7'z on this model is

S S
T YHiee | YEA

T (6)

often about 100 usec for nuclei. Equations (4) and (5) were first proposed by Felix
Bloch and are commonly referred to as the “Bloch equations. ” Although they have
some limitations, they have nevertheless played a most important role in under-
standing resonance phenomena, since they provide a very simple way of intro-
ducing relaxation effects.

28 SOLUTION OF THE BLOCH EQUATIONS FOR LOW H;

At this stage we shall be interested in the solution of the Bloch equations for
low values of the alternating field, values low enough to avoid saturation. We
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immediately transform to the coordinate frame rotating at w,, taking i, along
the z-axis and denoting Hg + (w./¥) by hg. Then

M. My — M,
dgf = —YM,H, + H_O_TT‘_ (1a)
M M,
dM M
= VM Hy — Mho] — Tﬁf (1c)

Since M, and M, must vanish as [ - 0, we realize from Eq. (1a) that in
a steady state, M, differs from Mo to order H 2. We therefore replace M, by M,
in Eq. {1¢). The solution is further facilitated by introdueing M . = M, -+ iM,,.
By adding Eq. (1b) to ¢ times Eq. (1c), we get

% = — M e+ YMoH, 2)
where \ '
1 .
o = T, —+ Yhot (3)
Therefore
s _at YMoH,
Mo = 4T @)+ ivho @

If we neglect the transient term and substitute Mo = XoHy, and define wq = YHyg,

w, = —w, we get

(wg — )Ty

M. = Xo(woT2) 7 T {w — wo)2T2

Hy

(5)
1
) 1T (o — wo?T}

M, = XolwoT H,

Equations (5) show that the magnetization is a constant in the rotating ref-
erence frame, and therefore is rotating at frequency w in the laboratory. In a

Y Y

Fig. 2.10. Rotating axes x, ¥
relative to laboratory axes
X, 7.

wi

typical experimental arrangement we observe the magnetization by studying the
emf it induces in a fixed coil in the laboratory. If the coil is oriented with its axis
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nlong the X-direction in the laboratory, we can caleulate the emf from knowledge
of the time-dependent component of magnetization Mx along the X-direction.

By referring to Fig. 2.10, we can relate the laboratory component Mx to the
components M, and M, in the rotating frame. Thus

My = M, cos wt + M, sin wi (6)
If we write the magnetic field as being a linear field,
Hx(t) = Hxpcos wl 2H; = Hxg (7)
then we see that both M, and M, are proportional to Hxo, and we can write
Mx{) = [X' cos wi -+ X' sin wtilxo (8)
defining the quantities X’ and x”’. By using Eqgs. (5) and (8), we get

r _ Xo (wg — )Ty
X =g wols T (T R
(8a)
Xo 1

xt = 28

g @l T — w0) 2T

Tt is convenient to regard both M x(f) and H x(¢) as being the real parts of complex
functions MS$(t) and HS(t). Then, defining the complex susceptibility X by

X = x' — ix"” (9)
and writing
HS(t) = Hyoe™* (10)
we find
M%) = xHZ Q) (11)
or .
Mx(t) = Re[xHxge™" : (11a)

Although Eqs. (7) and (11a) were arrived at by considering the Bloch equations,
they are in fact quite general. Any resonance is characterized by a complex sus-
ceptibility expressing the linear relationship between magnetization and applied
field.

Ordinarily, if a coil of inductance Ly is filled with a material of susceptibility
Xg , the inductance is increased to Lo{l + 2mX,), since the flux is increased by the
factor 1 - 47X, for the same current. In a similar manner the complex suscepti-
bility produces a flux change. The flux is not only changed in magnitude but also
in phase. By means of Eqs. (8) through (11}, it is easy to show that the inductance
at frequency w is modified to a new value L, given by

L = Loll + 4mx(w)] (12)

where X(w) = X'(w) — ix”(w). It is customary in electric circuits to use the sym-
bol j for v/—1. However, in order to avoid the confusion of using two symbols for
the same quantity, we use only .1

t In practice, the sample never completely fills all space, and we must introduce the “filling
factor’” g. Its caleulation depends on 2 knowledge of the spatial variation of the alternating field,
Then Eq. (12) becomes

= Lol + 4mgx(w)]
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Denoting the coil resistance in the absence of a sample as Rq, the coil imped-
ance 7 hecomes

Z == 1Lgw(l + 4mx! — 4rx’) 4 Ry
= tLow(l -+ 47xX") + Lopwiwx" -+ Ry

(13)

The real part of the susceptibility X’ therefore changes the inductance, whereas
the imaginary part, X/, modifies the resistance. The fractional change in resistance
AR/RO iS

AR Low

e = e X! = 4x 4

= A2 amx = amx'Q (a9
where we have introduced the so-called quality factor @, typically in a range of
50 to 100 for radio frequency coils or 1,000 to 10,000 for microwave cavities.

Assuming uniform magnetic fields occupying a volume V, the peak stored
magnetic energy produced by an alternating current, whose peak value is 4, is

1

3= HZ,V (15)

1 .
§ Lozg =

The average power dissipated in the nuclei P is
P = L AR = LLowdmx’’ (16)
By substituting from Eq. (15), we find
P = luHzX"'V (n

This eguation provides a simple connection between the power absorbed, X/, and
the strength of the alternating field. We shall use it as the basis of a caleulation
of X" from atomic considerations, since the power absorbed can be computed in
terms of such quantities as transition probabilities. Since X" and X" are always
related, as we shall see shortly, a calculation of X will enable us to compute x’.
Moreover, we recognize that the validity of Eq. (17) does not depend on the as-
sumption of the Bloch equations.

(wo ~w)Te

Fia. 2.11. X' and X" from the Bloch equations plotted versus
z= (wpg — w)Ta.

The particular functions X" and X", which are solutions of the Bloch equations,
are frequently encountered. They are shown in the graph of Fig. 2.11. The term
Lorentzian line is often applied to them.
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At this time we should point out that we have computed the magnetization
produced in the X-direction by an alternating field applied in the X-direction.
Since the magnetization vector rotates about the Z-direction, we see that there will
also be magnetization in the Y-direction. To describe such a situation, we may
consider X to be a tensor, such that

Il

X,7,
X,V

Tew 24 Z
Mgr(t) = X,,'QHQQB ! o ,Z

H

In general we shall be interested in Xxx.

RELATIONSHIP BETWEEN TRANSIENT AND STEADY-5TATE
RESPONSE OF A SYSTEM AND OF THE REAL AND IMAGINARY
PARTS OF THE SUSCEPTIBILITY

Suppose, to avoid saturation, we deal with sufficiently small magnetic fields.
The magnetic system may then be considered linear. That is, the magnetization
produced by the sum of two weak fields when applied together is equal to the sum
of the magnetization produced by each one alone. {We shall not include the static
field H, as one of the fields, but may find it convenient to consider small changes
in the static field.) In a similar manner, an ordinary electric circuit is linear, since
the current produced by two voltage sources simultaneously present is the sum of
the currents each source would produce if the other voltage were zero.

H()

Fra. 2.12. Pulse of magnetic
feld.

Let us think of the magnetization A3 (¢) produced at a time ¢ and due to a
maguoetic field H(¢') of duration At" at an earlier time (see Fig. 2.12). As a result
of the linearity condition we know that AM(t) e H(t'). It is also o A’ as long as
At & t — 1, since two pulses slightly separate in time must produce the same
effect as if they were applied simultaneously.

Therefore we may express the proportionality by writing

AM(f) = m(t — )H{t'y At (H
where m(t — ) is a “constant” for a given ¢ and ¢/, which, however, must depend
on how long (¢ — ') after the pulse of field we wish to know the magnetization.

The total magnetization at time ¢ is obtained by integrating Eq. (1} over the history
of the magnetic field H('):

M) = f_ _m( — OHE) @)

Note that m{t — ') = 01if ¢ > {, since the effect cannot precede the cause.
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To understand just what m(t — ¢') is, let us assume H(#') is a é-function at
t = 0. Then the magnetization at ¢ > 0 (which we shall denote by A5) is

My{t) = [_m m{t — t) (") d' = m(t) (3)

That is, m(f} is the response to a é-function at ¢ = 0. Knowledge of m(l) enables
us to determine from Eq. (2) the magnetization resulting from a magnetic field of
arbitrary time variation.

H)

Fie. 2.13. Step function.

Tf a unit step were applied at ¢ = 0 (Fig. 2.13), we should have magnetization,
which we shall denote as Mgpep:

-1 i
Maep(t) = / m{t — ) dil = ]; m(r) dr (4)
]
By taking the derivative of Eq. (4), we find |
O = L (Moer) 5)
m - dt step.

Equation (5) therefore shows us that knowledge of M step(f) enables us fo com-
pute m(t).

For example, suppose we discuss the magnetization of a sample following ap-
plication of a unit magnetic ficld in the z-direction for a system obeying the Bloch
equations. We know from the Bloch equations that

Mz(t) = XO[]- — GM”TI] = Iu-stcp (6)
Therefore, using Eq. (5),
__ Xo —tiTy
mit) = T e (7)

Note that in any real system, the magnetization produced by & ste'i) is bounded,
so that

f () dr (®)
0

CONVerges,
Suppose we apply an alternating magnetic field. We shall write it as complex

for simplicity:
HS (1) = Hxee™ 9)

SEC. 2.9
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Then

£
MG == / mt — 1) Hyoe™"

—0

x4
= Hyxpe™ ] mit — e =9 gy (10)

= ngei”/ m(r)e™“  dr
0
Comparison with Eq. (11) of the preceding section shows that
X = [ m{r)e ™" dr
0

x! =/G m(T) o8 wT dT (11)

X' m/ m(T) sin wr drt
0

It is simple to show, using the integral representation of the § function,

T
3e) = 5~ /_ e di (12)

that

~f-o0
m(r) = —21? /_m xX(w)e™ dw (13)

That is, m(7) and x{w) are Fourier transforms of each other. Knowledge of one
completely determines the other. One may attempt to predict the properties of

t Strietly speaking, we should turn on the alternating field adiabatically and consider the limit
of slower and slower turn-on. Thus we can take

HE{) = Hyosiotest

As i — — w0, this function goes to zero. We compute the limit as s — 0. Thus

1
ML) = j m( — ¢)Hxoeiet et dt’
—

t
onefw‘s“‘/ mi{t — )elwlt’ ~ et ~ 1) gy’

—G0

i

MO
HXQB("“’*'”’/ m{r)e (¢ Tia)r gr
0

and

o
x{w) = lim m(r)e (st iwir dp
=040

The a,dv‘antage of this definition is that it has meaning for the case of a “lossless resonator”
(magnetic analogue of an undamped harmonic oscillator), in which a sudden application of a
field would excite a transient that would never die out.
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resonance lines either by analyzing the response to an alternating signal or by
analyzing the transient response. Kubo and Tomita,T for example, base their gen-
eral theory of magnetic resonance on the transient response, calculating the
response of the system to a step.

Fxamination of Eq. (11) enables us to say something about X" and X'’ at both
zero and infinite frequencies. Clearly, X" vanishes at w = 0, since sin 0 vanishes,
but X' does not vanish at w = 0. Mereover, if m(7) is a finite, reasonably continu-
ous fupction whose total integral fi” m(7) dr is bounded, both X" and X will go
to zero as w — oo, since the oscillations of the sin wr or cos wr will “average” the
integrand to zero. Actually we may permit m(7) to be infinite at 7 = 0. We can
see this by thinking of [§ m(7) dr, the response to a step. We certainly do not
expect the response to a step to be discontinuous at any time other than that when
the step is discontinuous (¢ = 0). Therefore m(r) can have at most an integrable
infinity at { = 0, since the response must be bounded. We shall represent this by
a &-function. Thus, if

m{r) = myi(7) + ¢1 8(7) (14)

where m1(7) has no é-function, we get

x{w) = [O my(r) cos wr dr + ¢1 (15)

The integral vanishes as w — o0, leaving us ¢; = X'(o0). It is therefore con-
venient to subtract the é-function part from m(r), which amounts to saying that

X(w) — x'(0) = /G m(r)e™ " dr (16)

where now m(7) has no é-function part.

[Of course no physical system could have a magnetization that follows the
excitation at infinite frequency. However, if one were rather making a theorem
about permeability u, u(o0) is not zero. We keep X'(e) to emphasize the manner
in which such a case would be treated.]

We wish now to prove a theorem relating X’ and x”, the so-called Kramers-
Kronig theorem. To do so, we wish to consider X to be a function of a complex
variable z = z -+ 7y. The real part of z will be the frequency w, but we use the
symbol z for w to make the formulas more familiar. Therefore

x(g) — X' (») = / m(r)e™ " dr
. (17)

o
= [ m(r)e e dr
0

Since an integral is closely related to a sum, we see that X(2) is essentially a sum
of exponentials of z. Since each exponential is an analytic funetion of 2, so is the
integral, providing nothing too bizarre results from integration.

+ R. Kubo and K. Tomita, J. Phys. Soc. Japan, 9: 888 (1954).
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To prove that x{z) — X'{o0) is an analytic function of 2, one may apply the
Cauchy derivative test, which says that if

X(z) — X'(o0) = u + v (18)
where # and v are real, u and v must satisfy the equations

du oy dv ou
55 = é*g and 5 == —5-y- (19)

From Eq. (17) we have

w
U = / m(7) cos z7 ¥ dr
0

(20)
v = -—/ m(t) sin x1 " dr
0
giving

du _ —/ m(r)7 sin 27 ¥7 dr = &

ax i} ay
; e

du yrog.

i fo m(T)T cos zT & dr = F

which satisfy the Cauchy relations, provided it is permissible to take derivatives
under the integral sign. There are a variety of circumstances under which one can
do this, and we refer the reader to the discussion in E. W. Hobson’s bookT. IT'or
our purposes, the key requirement is that the integrals in both Egs. (20) and (21)
must not diverge. This prevents us in general from considering values of y that
are too positive. For any reasonable m{r) such as that of Eq. (7), the integrals
will be convergent for y < 0, so that x{z) — X'(w) will be analytic on the real
axis and in the lower half of the complex z-plane.

Whenever we use functions m(r) that are nof well behaved, we shall also imply
that they are to be taken as the limit of a well-behaved function. (Thus an ab-
sorption line that has zero width is physically impossible, but may be thought of
as the limit of a very narrow line.)

The presence of the term ¢¥" tells us that

X(2) — X'{w)| — 0 as y— —w
We already know that
X(z) — X'(0)] — 0 as T — oo

Therefore X(2) — x'{s0) is a function that is analytic for y = 0and goes to zero as
|2 = o in the lower half of the complex plane.

T E. W. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier's Series.
Cambridge University Press, 1026, p. 353 .
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Let us consider a contour integral along the path of Fig. 2.14 of the function

x{z") — x'{w®)
2 — w

Fic. 2.14, Contour integral.

By Cauchy’s integral theorem this integral vanishes, since x(z) has no poles inside

the contour.
ﬁf@>—x0ﬂd'= (22)

2 — w

Since |X(2) — X'(c0)| goes to zero on the large circle of radius p, that part of the
integral gives zero contribution. There remains the contribution on the real axis
plus that on the circle 7 — w = Re*. Thus

]W_RM;M d’ fzr M) X)) pieivgg

—w w — w Rew®

+f x(w) — X'(w) (28)
+R

w — w o
20=P/ x{w') —X(oo)

—- ) w -

+ milX(w) — X'(w0)]

where the symbol P stands for taking the prmcxpal part of ‘ohe integral (that is,
takes the limit of the sum of the integrals j'_; and j‘ +g 28 £ — 0 simul-
taneously in the two integrals).

Solving for the real and imaginary parts, we find

+e " !

a )

e N oo
xmﬂﬁipﬁm (W) = X(e) g

These are the famous Kramers-Kronig equations. Similar equations can be worked
out for analogous quantities such as the dielectric constant or the electrical sus-
ceptibility.

The significance of these equations is that there are restrictions placed, for
example, on the dispersion by the absorption. One cannot dream up arbitrary x'{(w)

$EC. 2.9

RELATIC

and x"'(
queneies
for & nt
given by

The int:
that it 1
As

The firs
makes X

where w
Of

1s showl

1 Of
the z-dire
Eq. (25)
field 7,
gimply r¢

Thus

1 Tha
and char

)




JHAPTER 2

function

les inside

(22)

art of the
. real axis

1 (that is,
» 0 shmul-

(24)

be worked
strical sus-

placed, for
trary X' (w)

RELATION BETWEEN TRANSIENT AND STEADY-STATE RESPONSE OF A SYSTEM 39

and x”(w). To phrase alternately, we may say that knowledge of X" for all fre-
quencies enables one to compute the X" at any frequency. Note in particular that
for a narrow resonance line, assuming X'(e) = 0, the static susceptibility X, is

given by
1 = X" (w")
X = X'(0) = P P . do’
oo
=21 ) de
T wo JSo

The integral of X”{w’) is essentially the area under the absorption curve. We see
that it may be computed if the static susceptibility is known.T
As an example, suppose

X'w) = efd(w — Q) — §{—w — Q)] (26)

The first term corresponds to absorption at frequency Q. The second term simply
makes x’* an odd function of w. For this function, what is X'(w)?

oo
C

X'(w) — X'(0) = }1}1’[ (8o’ — 2) — b(—of — D] dof

!
e w — w

_c[1 1 }__5{1 +1]
T Tl -0 —Q-wl 70— 2%

where we have used the fact that 8(z) = 8(—=).7t
Of course, near resonance (w =2 @), only the first term is large. The function
is shown in Fig. 2.15.

@7

x”

(@) (6)

F1a, 2.15. (a) Absorption spectrum, (b) Corresponding dispersion
spectrum.

1 Of course, if we are talking about a magnetie resonance experiment with the static field in
the z-direction and the alternating field in the z-direction, we are discussing x... Then x'(0) of
Eq. (25) is Xz:{0), whereas x is usually thought of as relating the total magnetization Mo to the
ﬁ_eld o, which produces it, and is thus x;:(0). However, 2 small static field H. in the z-direction
simply rotates Mo, giving .

My o= My 225 = % {0)H,
Al ’ Hﬂ
Thus x:.{0) = x..{8) = x,.
ft That the Dirac é-funetion is an even function of = follows from evaluating J"_-l': f(z) 6{ —z) dz
af‘fnehanging variables to ' = —ux, which shows this equals J__:c f(—3") 6z da’ = f(0) =
j—m f(x) 5(3} d$. ThuS a(x) =z 5('—'-3:)‘
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2.10 ATOMIC THEORY OF ABSORPTION AND DISPERSION

We shall now turn to obtaining expressions for the absorption and dispersion
in terms of atomic properties such as the wave functions, matrix elements, and
energy levels of the system under study. We shall compute X"’ direetly and obtain
X’ from the Kramers-Kronig equations.

We make the connection between the macroscopic and the microscopic prop-
erties by computing the average power absorbed, P, from an alternating magnetic
field H,q cos wt. From Eqg. (17) of Section 2.8 we have

P =3 x"HV (1)

in a volume V. It will be convenient henceforth to refer everything to a unit vol-
ume. (We shall have to remember this fact when we compute the atomic expres-
slons in particular cases.)

On the other hand, the alternating field couples to the magnetic moment e
of the kth spin. Therefore, in our Hamiltonian we shall have a time-dependent
perturbation 3pert of

5C)'pert - Z #xkﬂzo cos wi
’ )
= —uH.qcoswi
where u. i3 the z-component of the total magnetic moment
2

In the absence of the perturbation, the Hamiltonian will typically consist of
the interactions of the spins with the external static field and of the coupling 3¢;x
between spins 7 and k. Thus

3¢ = —ZuzkHG'FZG‘Cjk (4)
% I

We shall denote the eigenvalues of energy of this many-spin Hamiltonian as E,,
E,, and so on, with corresponding many-spin wave functions as |@) and |b). See
Fig. 2.16. Because of the large number of degrees of freedom there will be a quasi-
continuum of energy levels.

Ea; p(Ea)

Frg, 2.16. Eigenvalues of
energy.

£y, p(Ep)

The states la) and |b) are eigenstates of the Hamiltonian. The most general
wave function would be a linear combination of such eigenstates:

¥ o= Z Ca[a}e_(ﬂﬁ)E“t (5)
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where the ¢,’s are complex constants. The square of the absolute value of ¢,
gives the probability, p(a), of finding the system in the eigenstate a:

p(a) = Iﬂaiz

If the system is in thermal equilibrium, all states will be oceupied to some
extent, the probability of oceupation, p(a), being given by the Boltzmann factor

o—EalkT
E) = 4=
p( Z o ol BT (6)

B,

where the sum £, goes over the entire eigenvalue spectrum. The denominator is
just the classical partition function, Z, inserted to guarantee that the total proba-
bility of finding the system in any of the eigenstates is equal to unity; that is,

Z p(Ea) = 1
Eq

We can compute the absorption rate Pup, due to transitions between states
a and b in terms of Wy, the probability per second that a transition would be
induced from a to b if the system were entirely in state a initially:

Poy = haWaulp(E,) — p(f)] (M)

The terms p(E:) and p(E,) come in because the states {a) and |b) are only
fractionally occupied.

The calculation of the transition probability W, is well known from ele-
mentary quantum mechanics. Suppose we have a time-dependent perturbation
FCoers given by

Hpert = Fe ™! 4+ Ge™’ 8

where F and @ are two operators. In order that 3per will be Hermitian, ¥ and G
must be related so that for all states la) or |b),

(@lFlb) = (b|Gla)* &)

Under the action of such a perturbation we can write that Wy is time independent
and is given by the formula

Woap — %Z—T (P D) (e — By — H0) (10)

provided certain conditions are satisfied: We do not ask for details that appear
on a time seale shorter than a certain characteristic time 7. It must be possible
to find such a time, which will satisfy the conditions that (1} the populations change
only a small amount in 7 and (2} the possible states between which absorption ean
oceur must be spread in energy continuously over a range A such that AE > #/7.

These conditions are violated if the perturbation matrix element |(alF|b)| ex-
ceeds the line width, as it does when a very strong alternating field is applied, We
can see this point as follows: The quantity AL may be taken as the line width.
We have, then, that A% < [(a}F|b}|. But under these circumstances one can show
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that the populations change significantly in a time of order #i/|(alF|b)|. Thus to
satisfy the condition 1 that the populations change only a small amount during T,
7 must be chosen less than #//(a{Fb)!. This gives us

_h
iy < 2

But, by hypothesis,
AE < |(alF|b)]
Therefore

AE'(iE
T

which violates condition 2 ahove. Thus it is not possible to satisfy both conditions,
and the transition probability is not independent of time.

This example shows why we did not get a simple time-independent rate process
in Section 2.6, since for that problem, the energy levels in the absence of I, are
perfectly sharp (AE = 0), |(a|F|b)] > AE.

In our formula for W,; we use the 8-function. This implies that we shall even-
tually sum over a quasi-continuum of energy states. In writing the transition proba-
bility, it is preferable to use the é-function form to the integrated form involving
density of states in order to keep track of quantum numbers of individual states.

By summing over all states with B, > E,, we find

= 27 H?
P=2T g S (B — (B @elt)? 8(E. — By — 1)
En>Eb (11)
— _2(”‘2 xuﬂio

Therefore

X'w) =7 ) [pEy) — pE)|(@lulb)|)? 6y — By — hw)  (12)

E,>Ey

Aslong as B, > E,, only positive w will give absorption because of the s-function
in Eq. (12). Removal of the restriction £, > E, extends the meaning of X" (w)
formally to negative w. Note that since p(E;) — p(E,) changes sign when a and b
are interchanged, X" (w) is an odd function of w, as described in the preceding
section.

X'w) =7 Y [p(Ey) — p(Ba)l|(alualh)® 8(By — Eyp — #iw)  (13)
E, By

Assuming X'(w) = 0 for our system, we can easily compute X'(w), since

»
Rad 1 !
x(w) = L P/ HCApW

T o W — w 4o (14)

= 7 E {P(Eb) —_— p(Ea)H(ﬂ#g‘b)iz ;1_:_ P/ 3(Ea, — By — ﬁw') o’

¥
— W — W
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or, evaluating the integral,

’ - . 9 1
X = 3 () — pEN ) gy (9

By using the fact that ¢ and b are dummy indices, one may also rewrite Eq. (13)
to give

X'(w) = E p(Eb)KaI#a:Ib)P[Ea — El’b — fw + E, — El'b + ﬁw] (152)

B, By

The quanta fiw correspond crudely to the energy required to invert a spin in
the static field. This energy is usually much smaller than £7". For nuclear moments
in strong laboratory fields (~10* gauss), T must be as low as 1072 °K so that fiw
will be as large as kT, This fact accounts for the difficulty in producing polarized
nuclei. For electrons, k7 ~ fiw at about 1°K in a field of 10* gauss. Therefore
we may often approximate

B, — By < KT (16)

We may call this the “high-temperature approximation.” By using Eq. (6) and
Hq. (16), we have
¢ Bl T Ea—BpibT _ 4]

p(E) — p(Ba) = Z

o PRI
- Z kT

Substitution of Eq. (17) into Eq. (13) together with recognition that £, — Ep =
fiw, owing to the s-functions, gives

(17)

X'{w) = %"“—Z- S E T (4], l0)| P (B — By — fi) (18)
E, B

Another expression for X'/(w) is frequently encountered. It is the basis, for
example, of P. W. Anderson’s theory of motional narrowing [J. Phys. Soc. Japan,
9: 316 (1954)]. We discuss it in Appendix B because a proper discussion requires
reference to some of the materials in Chapters 3 and 3.

It is important to comment on the role of the factors e~ #+/*7, If one is dealing
with water, for example, the proton absorption lines are found to be quite different
at different temperatures. Tce, if cold enough, possesses a resonance several kilo-
cycles broad, whereas the width of the proton resonance in liquid water is only
about 1 eycle. Clearly the only difference is associated with the relative mobility of
the Hy0 molecule in the liquid as opposed to the solid. The position coordinates of
the protons therefore play an important role in determining the resonance. For-
mally we should express this fact by including the kinetic and potential energies
of the atoms as well as the spin energies in the Hamiltonian. Then the energies
Iz and E, contain contributions from beth spin and positional coordinates. Some
states la) correspond to a solid, some to a liquid. The factor e ™#+/*7 picks out the
type of “lattice” wave functions or states that are representative of the tempera-
ture, that is, whether the water molecules are in liquid, solid, or gaseous phase.



44

BASIC THEORY CHAPTER 2

Commonly the exponential factor is omitted from the expression for X'/, but the
states |a) and |b) are chosen to be representative of the known state. The classic
papers of Gutowsky and Pake, on the effect of hindered molecular motion on the
width of resonanece, use such a procedure.

Evaluation of x”” by using Eq. (18) would require knowledge of the wave
functions and energy levels of the systemn. As we shall see, we rarely have that
information, but we shall be able to use Eq. (18) 0 compute the so-called moments
of the absorption line. We see that the only frequencies at which strong absorption
will occur must correspond to transitions among states between which the mag-
netic moment has large matrix elements.
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