Chem 249 Problem Set 4

R. Corn Winter 2020

Basic Quantum Theory and Energy Levels in Spectroscopy

- Spin (Angular Momentum) Systems
- Time Independent Perturbation Theory
- Perturbed Spin 1/2 Systems
- Singlet Triplet Spin Coupling

Handouts:

- 1. QM1: Basic Equations
- 2. QM2: Time Independent Perturbation Theory

Additional Readings:

- 1. Atkins, Quantum Mechanics
- 2. Cohen-Tannoudji, Quantum Mechanics
- 3. Schiff, Quantum Mechanics

Problems:

- 1. This problem looks at J coupling in proton NMR. Consider a molecule that contains two inequivalent protons, e.g. CHCl₂CHBr₂.
- 1.1) The protons in this molecule have spins I_A and I_B with quantum numbers I_A and I_B that are both, of course, equal to 1/2. The two spins have unperturbed frequencies ω_A and ω_B . Like the angular momentum in an atom, they couple to form a total spin I_{tot} . What values can the quantum number I_{tot} take?
- 1.2) The magnitude of I_{tot} is related to the magnitudes of I_A and I_B and the dot product $I_A \cdot I_B$:

$$\left|\mathbf{I}_{tot}\right|^2 = \left|\mathbf{I}_A\right|^2 + \left|\mathbf{I}_B\right|^2 + 2\mathbf{I}_A \bullet \mathbf{I}_B$$

Find the value of $I_A \cdot I_B$ for the two possible values of I_{tot} .

1.3) Consider the total Hamiltonian of the system for the case of spin-spin coupling:

$$H = -\omega_{\scriptscriptstyle A} I_{\scriptscriptstyle Z}^{\scriptscriptstyle A} - \omega_{\scriptscriptstyle B} I_{\scriptscriptstyle Z}^{\scriptscriptstyle B} + \frac{J}{\hbar} \mathbf{I}_{\scriptscriptstyle A} \bullet \mathbf{I}_{\scriptscriptstyle B}$$

If $\omega_A = \omega_B$ (e.g., CHCl₂CHCl₂), the energy eigenstates for this two spin system can be given by:

where $|++> = |+_A>|+_B>$, etc. Eigenstates 1,2 and 4 have $I_{tot} = 1$; Eigenstate 3 has $I_{tot} = 0$. Where do these eigenstates come from? What are the energies for these four states? What does the NMR spectrum look like?

- 1.4) Using FIRST ORDER perturbation theory, find the energy levels for the case when $\omega_A \neq \omega_B$ (e.g., CHBr₂CHCl₂).
- 1.5) Using matrix diagonalization, find the EXACT solutions for the energy levels for the case $\omega_A \neq \omega_B$ (e.g., CHBr₂CHCl₂).
- 2) This problem is about local vs. normal modes as described in the Child papers #1 and 2 on the website.
- 2.1) Bond vibrations of the form X-H are highly anharmonic. A local mode picture has been suggested for the XH stretches in H_2X which uses a Morse Potential. What is a Morse Potential, and what are its eigenvalues? (Hint: see section 10.9 in Atkins).
- 2.2) In the local mode approximation with molecules of the form H_2X , the two fundamental modes are given by symmetric and antisymmetric combinations of local modes (See Child papers #1 and #2). The model Hamiltonian (Eq 3 in Child paper #1) is said to only mix state \ln_a , n_b > with states \ln_a+1 , n_b-1 > and \ln_a-1 , n_b+1 >. Please show/explain why this is the case.
- 2.3) The coupled local mode Hamiltonian predicts splittings for the fundamentals and overtones as shown in Figure 3 of Child paper #1. Figure 3 contains the anharmonic term ωx and the coupling strength parameter lambda, which is given in Eqns 5 and 6. Please explain the figure and use Child paper #2 to explain where lambda comes from.
- 2.4) Please explain Figure 4 of Child paper #1, and what it is useful for. Why is the x-axis $(2/\pi)^* \arctan(\lambda/\omega x)$?