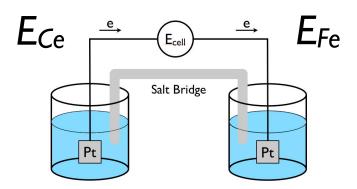
Potentiometry


$$Ce^{3+} \rightarrow Ce^{4+} + e$$
 $Fe^{3+} + e \rightarrow Fe^{2+}$ Oxidation Reduction

$$Fe^{3+} + e \rightarrow Fe^{2+}$$
Ce³⁺ Salt Bridge
$$Fe^{3+} + e \rightarrow Fe^{2+}$$

R. Corn Fall 2012

Half Cell Potentials

$$E_{cell} = E_{Fe} - E_{Ce}$$

Half Cell Potentials are always written as reductions:

$$Fe^{3+} + e \rightarrow Fe^{2+}$$

$$Ce^{4+} + e \rightarrow Ce^{3+}$$

$$E_{Fe} = E_{Fe}^0 - \frac{RT}{F} ln \frac{[Fe^{2+}]}{[Fe^{3+}]}$$

$$E_{Ce} = E_{Ce}^{0} - \frac{RT}{F} ln \frac{[Ce^{3+}]}{[Ce^{4+}]}$$

$$E_{cell} = E_{red} - E_{ox}$$

$$E_{cell} = E_{red} - E_{ox}$$

Since we always use half cell differences, we can add an arbitrary constant to all half cells. By convention, we assume that the E^o for the normal hydrogen electrode (NHE) is equal to zero:

Half Cell Reaction for Hydrogen:

$$H^+ + e \to \frac{1}{2} H_{2(g)}$$

$$E_H = E_H^0 + \frac{RT}{F} ln \frac{P_{H_2}^{1/2}}{[H^+]} \qquad E_H^0 = 0$$

Metal Indicator Electrodes

$$Ag^+ + e \rightarrow Ag_{(s)}$$

$$E_{Ag} = E_{Ag}^{0} - \frac{RT}{F} ln \frac{1}{[Ag^{+}]}$$

Silver Electrode: Used to measure [Ag+] in solutions

Reference Electrodes

$$AgCl_{(s)} + e \rightarrow Ag_{(s)} + Cl^-$$

$$E_{AgCl} = E_{AgCl}^{0} - \frac{RT}{F} ln \frac{[Cl^{-}]}{1}$$

Silver Chloride Reference Electrode: Only depends on [Cl-]

Membrane and Ion Selective Electrodes (ISEs)

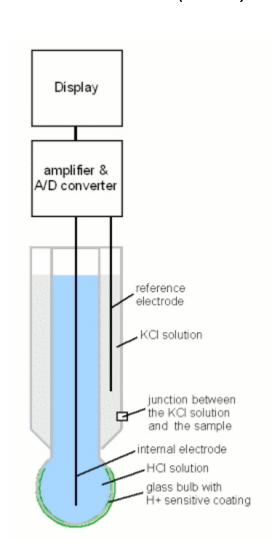
$$E_{cell} = E_{red} - E_{ox} + E_{j}$$

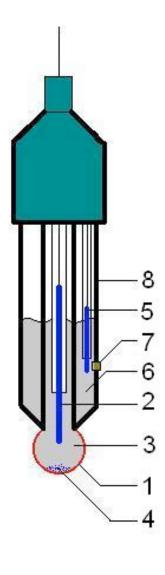
 E_i is a junction potential that is sensitive to only one ion:

$$E_{j} = -\frac{RT}{F} ln \frac{[H^{+}]_{1}}{[H^{+}]_{2}}$$
 $[H^{+}]_{1}$ $[H^{+}]_{2}$

ion permeable membrane

E_{red} and E_{red} are typically both references electrodes (e.g., AgCl)

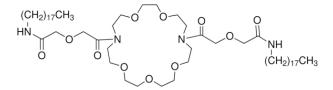

Membrane and Ion Selective Electrodes (ISEs)


pH Electrode

Ca²⁺ Electrode

NO₃- Electrode

Corning glass membrane


Membrane and Ion Selective Electrodes (ISEs)

pH Electrode

Ca²⁺ Electrode

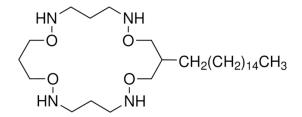
NO₃- Electrode

Polymer (PVC)membrane electrode containing a calcium ionophore

Specifications

- Range: 0.20 to 40,000 mg/L or ppm (5 x 10⁻⁶ M to 1.0 M)
- Resolution (LabQuest 2, LabQuest, LabQuest Mini, Go!Link, LabPro):
 - o % of reading: 1.4%
 - Low scale reading: 0.20 ±0.0028
 - High scale reading: 40,000 ±560 mg/L
- pH Range: 3 to 10
- Interfering Ions: Pb²⁺, Hg²⁺, Sr²⁺, Cu²⁺, Ni²⁺
- Electrode Resistance: 1 to 4 MΩ

- Electrode Slope (log voltage vs. concentration): +28 mV/decade
- · Reproducibility: ± 5% of reading
- Temperature range (can be placed in): 0 to 50°C (no temperature compensation)
- · Minimum immersion: 1 inch
- Electrode Length: 155 mm
- · Body Diameter: 12 mm
- · Cap Diameter: 16 mm
- · Cable Length: 100 cm


Membrane and Ion Selective Electrodes (ISEs)

pH Electrode

Ca²⁺ Electrode

NO₃- Electrode

Polymer (PVC)membrane electrode containing a nitrate ionophore

Specifications

- Range: 0.10 to 14,000 mg/L or ppm (7 x 10⁻⁶ M to 1.0 M)
- Resolution (LabQuest 2, LabQuest, LabQuest Mini, Go!Link, LabPro):
 - o % of reading: 0.7%
 - Low scale reading: 0.10 ±0.0007
 - High scale reading: 14,000 ±98 mg/L
- pH Range: 2.5 to 11
- Interfering lons: CIO₄, I', CIO₃, CN', BF₄
- Electrode Slope (log voltage vs. concentration):
 –56 mV/decade

- Electrode Resistance: 1 to 4 MΩ
- Reproducibility: ±5% of reading
- Temperature range (can be placed in): 0 to 50°C (no temperature compensation)
- · Minimum immersion: 1 inch
- · Electrode Length: 155 mm
- · Body Diameter: 12 mm
- · Cap Diameter: 16 mm
- Cable Length: 100 cm