

$$A = \epsilon d \left(\frac{C_x V_x}{V_t} + \frac{C_s V_s}{V_t} \right) = b + m V_s \qquad \longrightarrow \qquad C_x = \frac{b C_s}{m V x} = C_s \frac{(b/m)}{V x}$$

Robert Corn - Chem M3LC UC Irvine

You can determine the concentration of an unknown concentration Cx by absorbance (or fluorescence) using the method of standard addition.

To a volumetric flask of volume Vt you:

- i) add a volume Vx of the unknown concentration Cx
- ii) add a volume Vs of a solution with a known concentration Cs
- iii) fill the volumetric to volume Vt

Make five solutions by addition of five different volumes Vs(n) where:

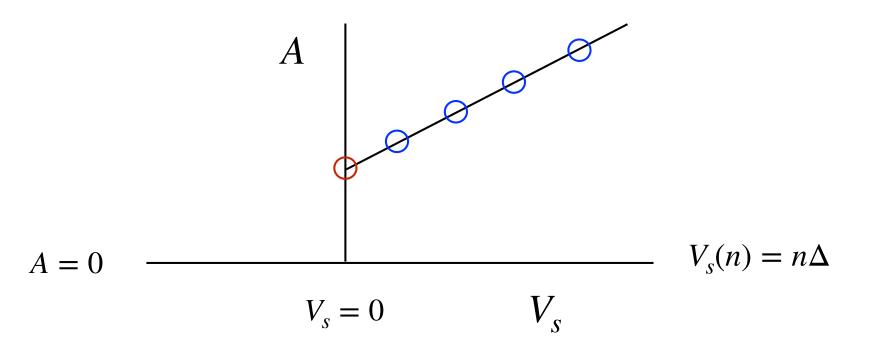
$$V_{s}(n) = n\Delta$$
 $n = 0,1,2,3,4$ $\Delta = 5 \text{ mL}$ (for example)

For each solution, the # of moles is CxVx + CsVs and volume is always Vt. The concentrations of the five solutions are:

$$C_n = \frac{C_x V_x + C_s V_s(n)}{V_t} = \frac{C_x V_x}{V_t} + \frac{C_s n \Delta}{V_t}$$
 $n = 0,1,2,3,4$

We end up with five solutions of different concentrations Cn:

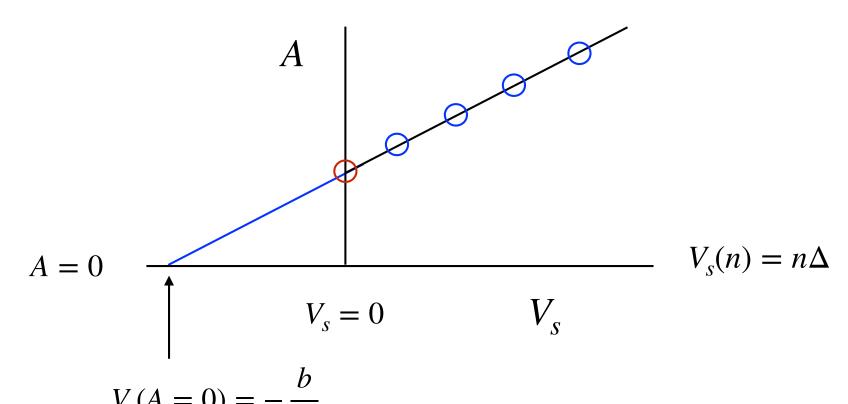
$$C_n = \frac{C_x V_x + C_s V_s(n)}{V_t}$$
 $n = 0,1,2,3,4$


Measure the Absorbance of each solution A(n):

$$A(n) = \epsilon dC_n = \epsilon d\left(\frac{C_x V_x}{V_t} + \frac{C_s V_s(n)}{V_t}\right) = b + mV_s(n)$$

Plot Absorbance vs Vs and fit with a straight line to obtain m & b.

$$\frac{b}{m} = \frac{C_x V_x}{C_s} \qquad \longrightarrow \qquad C_x = C_s \frac{(b/m)}{Vx}$$


$$A(n) = b + mV_{s}(n)$$

Plot Absorbance vs Vs and fit with a straight line to get a slope and intercept m & b.

$$\frac{b}{m} = \frac{C_x V_x}{C_s} \qquad \longrightarrow \qquad C_x = C_s \frac{(b/m)}{Vx}$$

$$A(n) = b + mV_s(n)$$

The x intercept at A=0 is -b/m

$$V_s(A=0) = -\frac{b}{m}$$

b/m has units of volume

$$C_{x} = C_{s} \frac{(b/m)}{Vx}$$

$$A = \epsilon d \left(\frac{C_x V_x}{V_t} + \frac{C_s V_s}{V_t} \right) = b + m V_s$$

$$\frac{b}{m} = \frac{C_x V_x}{C_s} \qquad \longrightarrow \qquad C_x = C_s \frac{(b/m)}{Vx}$$

$$C_x = C_s \frac{(b/m)}{Vx}$$

Standard deviation for Cx is sc:

$$s_c = \frac{C_s}{V_x} \frac{s_r}{m} \sqrt{\frac{1}{N} + \frac{(\bar{y})^2}{m^2 S_{xx}}}$$
 equation because they plot CsVs/Vx instead of Vs. See paper in

Book has different equation because they Vs. See paper in Other Handouts.

95% confidence interval:

$$C_x \pm t_{N-2} s_c$$

4	Α	В	С	D	Е	F	G H	1	J K	L
1 Sta	andard #	x: Added Vol. (mL)	y: Reading	xi^2	yi^2	xi*yi	N	5	Standard Conc. (ppm)	50
2	1	0	14	C	196	0	xbar	2	Volume Unknown (mL)	5
3	2	1	25	1	625	25	ybar	36.6	Total Volume (mL)	25
1	3	2	37	4	1369	74	Sxx	10		
5	4	3	47	9	2209	141	Syy	1301.2	-x-intercept (mL or ppm)	1.210526316
	5	4	60	16	3600	240	Sxy	114	xc (volume as axis,mL) (ppm)	12.10526316
SU		10	183	30	7999	480			xc (conc. as axis, ppm) (ppm)	6.052631579
	UM xi)^2	100					m	11.4		
(SL	UM yi)^2	33489					b	13.8	Note: LINEST can calculate some of these numbers for you	
)									Linest Output	
1							sr	0.73029674	m	b
2							sm	0.23094011	sm	sb
3							sb	0.56568542	r^2	sr
1							sc	0.07106881	J F	N-2
5										
5							t (N-2)	3.182		
7									Linest Output	
3							95%CI		11.4	13.8
9							slope (m)	0.73495449	0.230940108	0.565685425
0							Intercept (b)	1.80026349	0.998770366	0.730296743
1							x-intercept	0.22617268	2436.75	3
2									1299.6	1.6
3										
4									matches what we calculated!	
5										

We will create a spreadsheet to make these standard addition calculations!