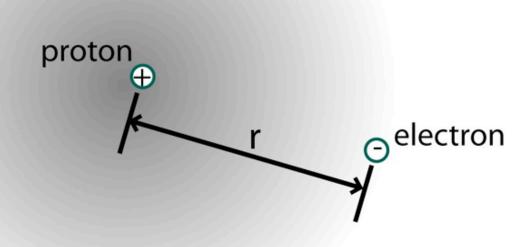
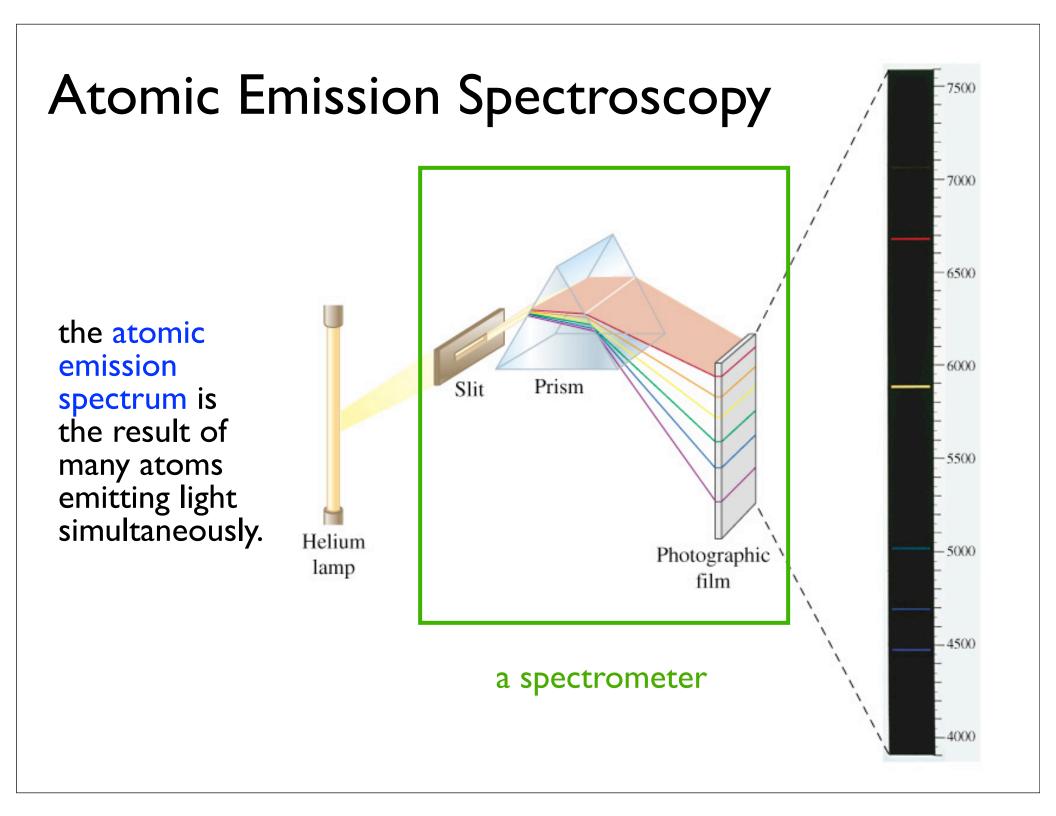
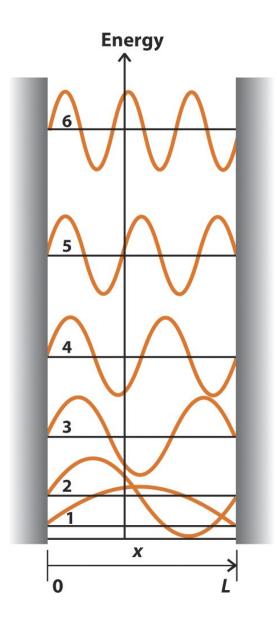
The Hydrogen atom



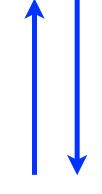


Absorption and Emission Spectroscopy



$$\Delta E_{51} = E_5 - E_1 = h \nu$$

$$|n=5\rangle$$



$$|n=1\rangle$$

Light will be absorbed or emitted only if $\Delta E = hV$

The spectrum is QUANTIZED!

$$\Delta E_{51} = 24G$$

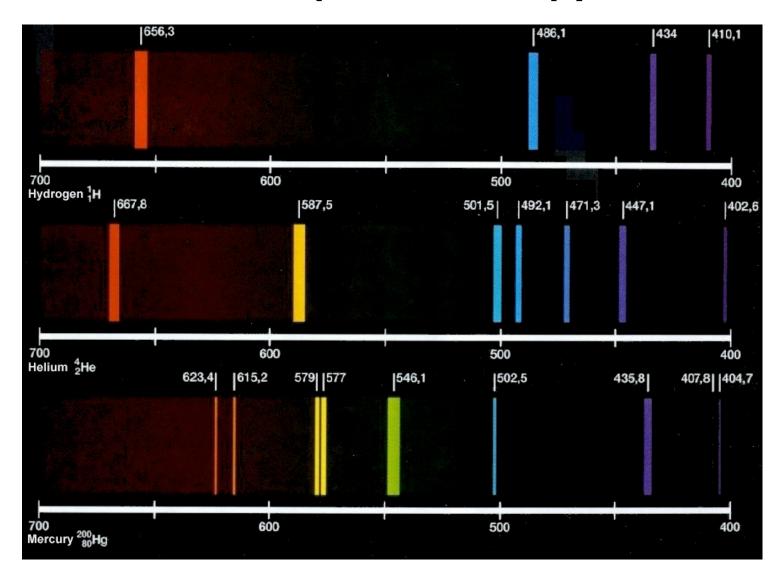
$$\Delta E_{41} = 15G$$

$$\Delta E_{31}=8G$$

$$\Delta E_{21} = 3G$$

$$G = h^2/8mL^2$$

Atomic Emission Spectroscopy



The emission spectra of H, He and Hg are all quantized!

Energy eigenvectors/eigenstates

$$\hat{H}|\Psi_n\rangle = E_n|\Psi_n\rangle$$

$$\ket{\Psi_n}$$
 is the eigenstate vector solution to the Schrödinger equation.

 E_n is the energy eigenvalue associated with this eigenstate vector.

Hydrogen eigenstates/wavefunctions

$$|\Psi_n\rangle$$

State Vectors

$$\Psi_{n,l,m_l}(\mathbf{r})$$

Three Dimensional Wavefunction (Hydrogen Atom)

The spatial component of the eigenstate vector can be represented by a three dimensional wavefunction $\psi(\mathbf{r}) = \psi(x,y,z)$.

The Hydrogen Atom Hamiltonian

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\mathbf{r})$$

$$\hat{\sigma}_{0} = -10$$

$$4\pi\varepsilon_0 r$$

$$r = -\frac{1}{4\pi\varepsilon_0} \frac{e^2}{r}$$

$$\frac{1}{20} \frac{e^2}{10^{-10}4 \cdot 10^{-10}6 \cdot 10^{-10}8 \cdot 10^{-10} \cdot 1 \cdot 10^{-9}1.2 \cdot 10^{-9}}$$

V(r) is called the Coulomb potential.

r, m

1. a set of eigenstate energies, E_{n} .

Example: PIAB

$$E_n = \frac{n^2 h^2}{8mL^2} \qquad n = 1, 2, 3...$$

- 1. a set of eigenstate energies, E_n
- 2. a set of eigenstate vectors $|\psi_n\rangle$.

Example: PIAB

$$E_n = \frac{n^2 h^2}{8mL^2} \qquad n = 1, 2, 3...$$

$$|n=1\rangle$$
 Eigenstate vectors are labeled with the quantum number n.

1. a set of eigenstate energies, E_n

Hydrogen atom solution:

$$E_n = -\frac{hcR}{n^2}$$
 $n = 1, 2, 3...$

- 1. a set of eigenstate energies, E_n
- 2. a set of eigenstate vectors $|\psi_n\rangle$.

Hydrogen atom solution:

$$E_n = -\frac{hcR}{n^2}$$
 n = 1, 2, 3...

$$|n,l,m_l,m_s\rangle$$
 State vectors are labeled with the quantum number n... AND three more: I, m_l, m_s

1. a set of eigenstate energies, E_n

Hydrogen atom solution:

$$E_n = -\frac{hcR}{n^2}$$
 n = 1, 2, 3...

Let's focus on the energies first!

1. a set of eigenstate energies, E_{n} .

Hydrogen atom solution:

$$E_n = -\frac{hcR}{n^2}$$
 $n = 1, 2, 3...$ $hcR = 13.60 \text{ eV}$

R is the Rydberg constant.

1. a set of eigenstate energies, E_n

A small aside about the Rydberg constant R:

$$R = -\frac{m_e e^4}{8h^3 \varepsilon_0^2 c} \qquad \text{I.097} \times 10^7 \, \text{m}^{-1} \text{ in SI units}$$

Atkins eliminates c from the definition of R, and ends up defining it in units of s⁻¹ or Hz.

R(Atkins) = Rc =
$$(1.097 \times 10^7 \text{ m}^{-1}) \times (2.997 \times 10^8 \text{ m s}^{-1})$$

= 3.288×10^{15} Hz. Oh well.

1. a set of eigenstate energies, E_n .

Hydrogen atom solution:

$$E_n = -\frac{hcR}{n^2}$$
 $n = 1, 2, 3...$ $hcR = 13.60 \text{ eV}$

13.60 eV is the Ionization Potential for Hydrogen.

Hydrogen atom energy levels

E ≥0 means ionization

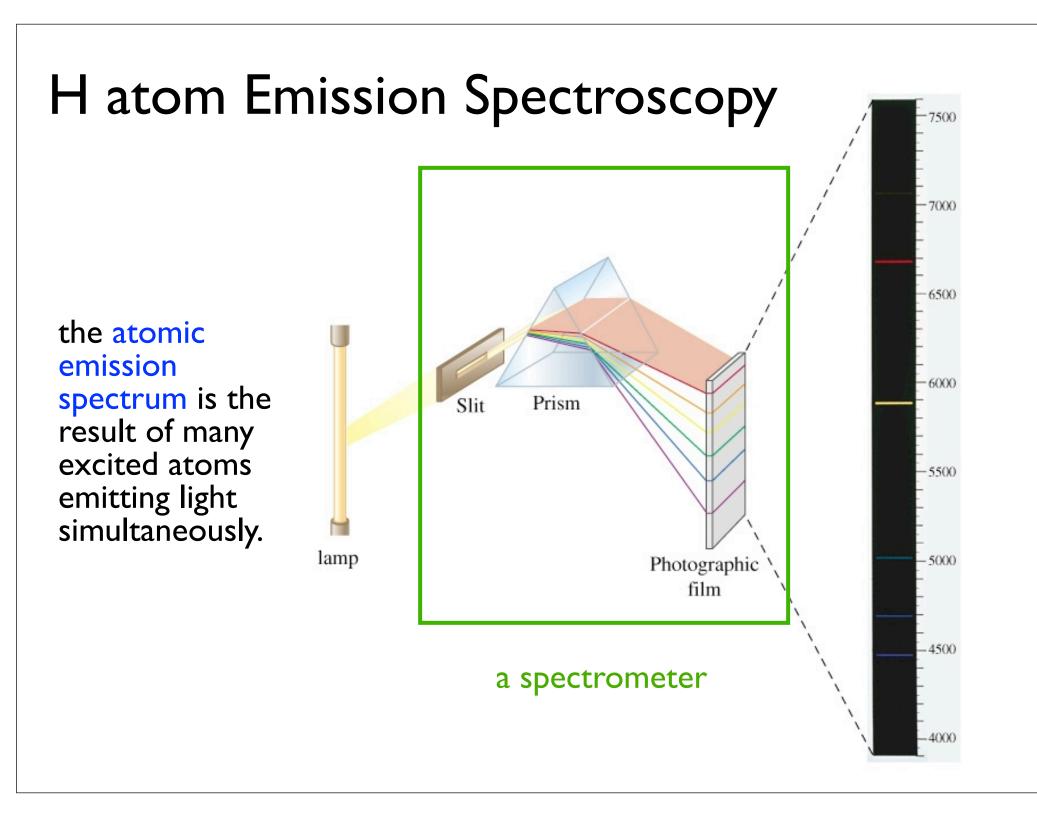
$$n=\infty$$
------ 0 eV
 $n=4$ -0.851 eV
 $n=3$ -1.51 eV

$$E_n = -\frac{hcR}{n^2}$$

$$hcR = 13.60 eV$$

$$n = 1, 2, 3...$$

n is called the principal quantum number.



H atom Emission Spectrum

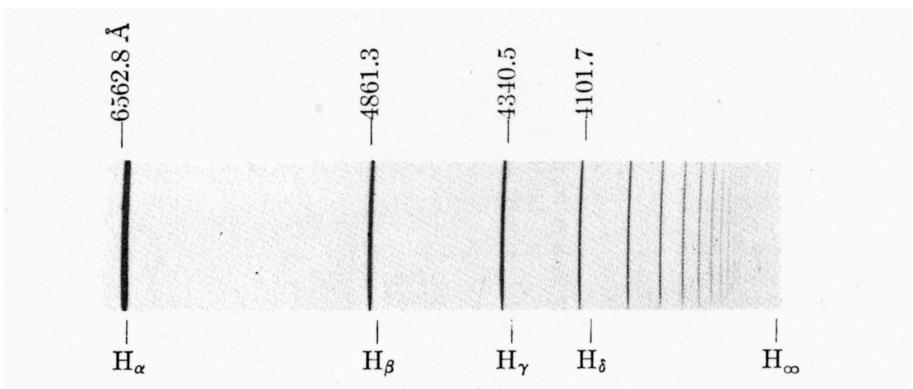
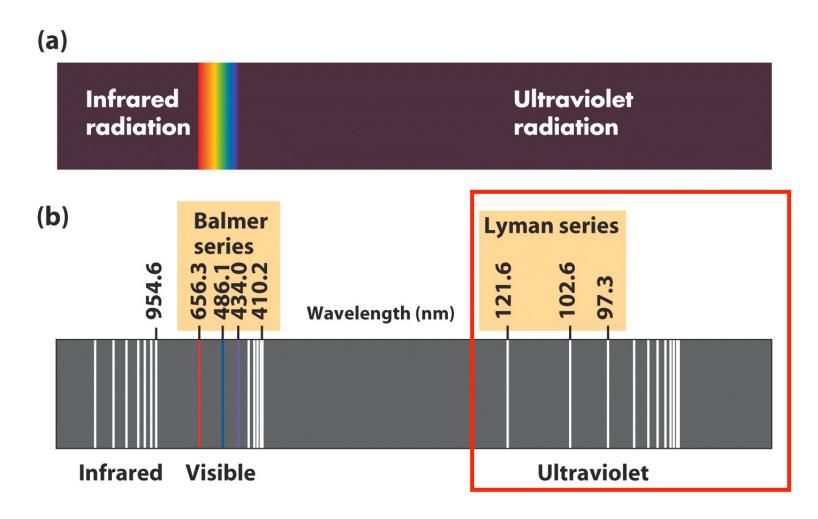


Fig. 1. Emission Spectrum of the Hydrogen Atom in the Visible and Near Ultraviolet Region [Balmer series, Herzberg (41)]. H_{∞} gives the theoretical position of the series limit.

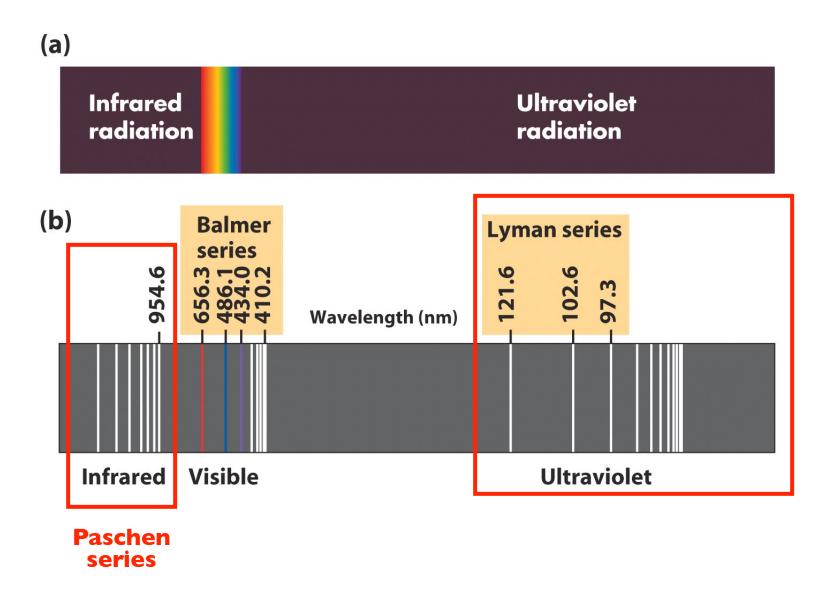
From "Atomic Spectra and Atomic Structure" by G. Herzberg, 1937.

H atom Emission Spectrum



There are two more series in the UV and IR

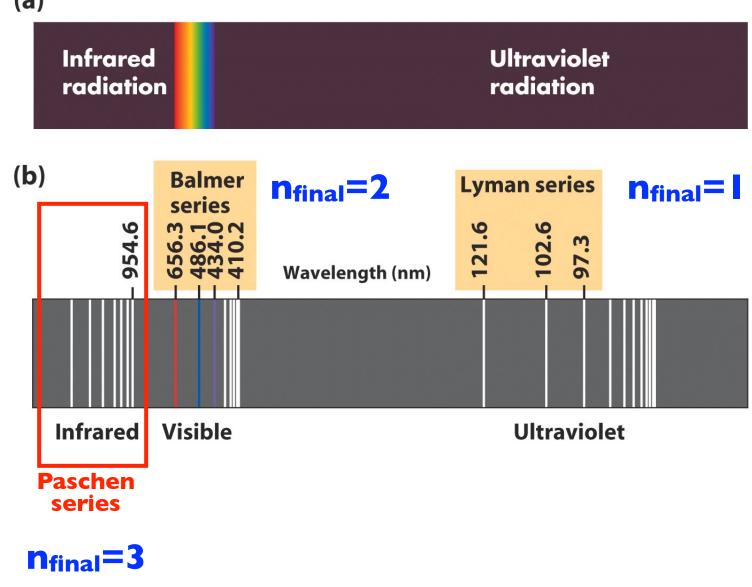
H atom Emission Spectrum



There are two more series in the UV and IR

All of the lines within each of the 3 named spectroscopic "series" share the same nfinal.

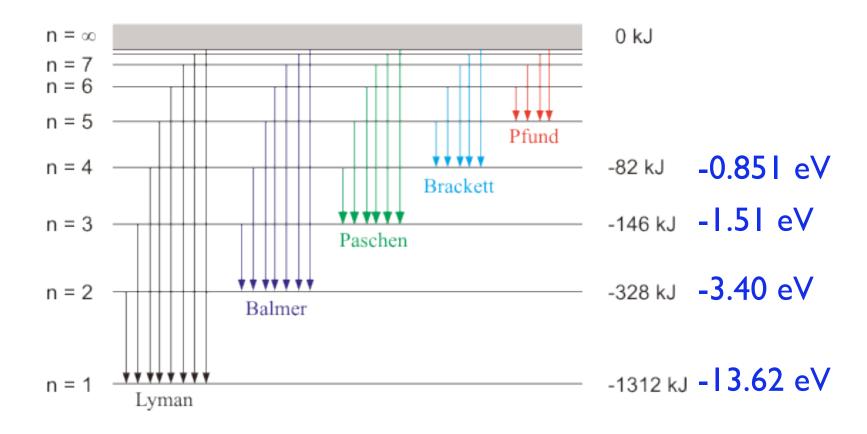
(a)





All of the lines within each of the 3 named spectroscopic "series" share the same n_{final}.

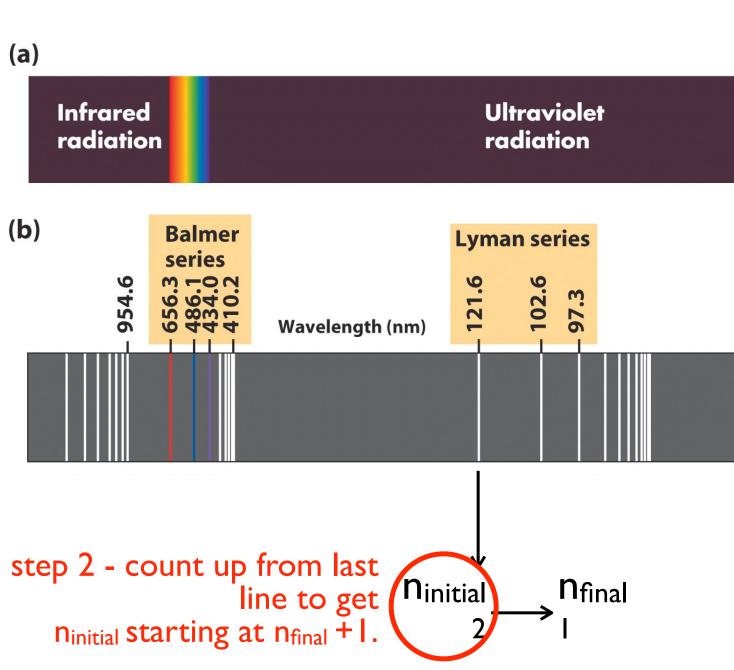
Actually, there are more series further in the IR.

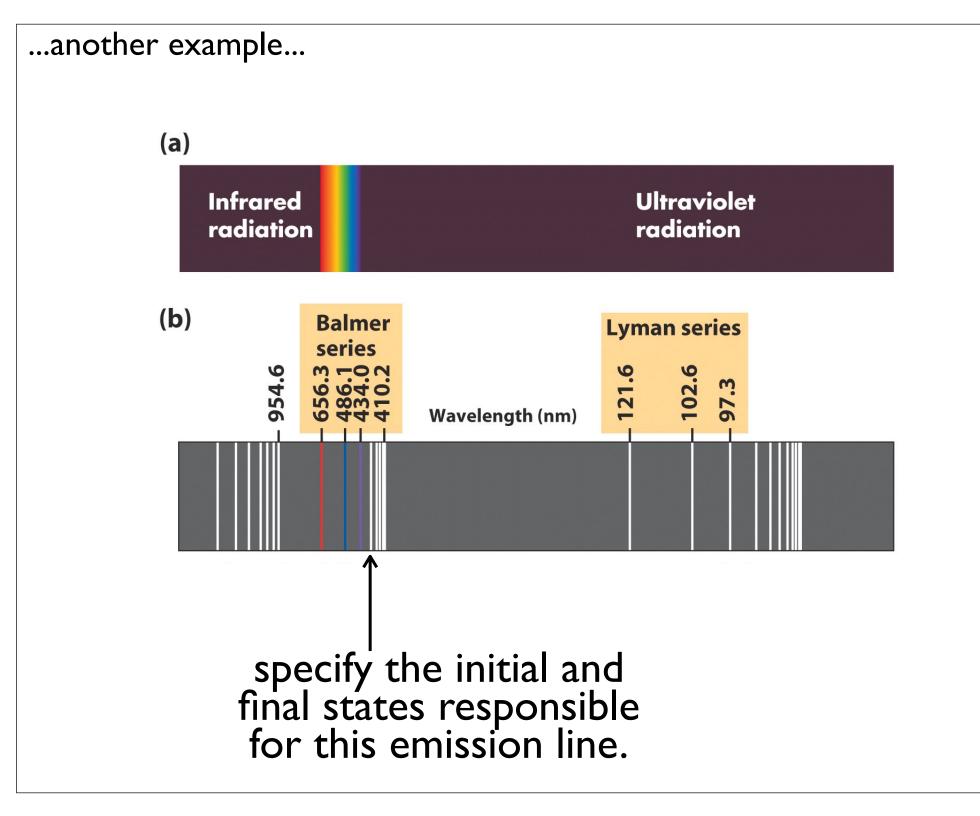


...let's do a few examples: (a) Infrared **Ultraviolet** radiation radiation (b) **Balmer Lyman series** series 102.6 97.3 Wavelength (nm) **Infrared Ultraviolet Visible n**initial **n**final

...let's do a few examples: (a) Infrared **Ultraviolet** radiation radiation (b) **Balmer Lyman series** series 102.6 Wavelength (nm) **Infrared Ultraviolet Visible** step I - look at **n**final **n**initial series to get n_{final}

...let's do a few examples:

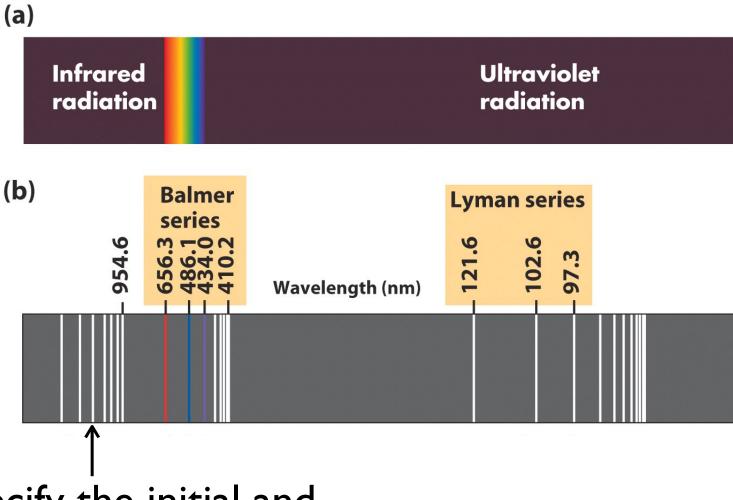




...another example... (a) Infrared **Ultraviolet** radiation radiation (b) **Balmer** Lyman series series 656.3 486.1 434.0 410.2 Wavelength (nm) **n**final

...another example... (a) Infrared **Ultraviolet** radiation radiation (b) **Balmer** Lyman series series 656.3 486.1 434.0 410.2 Wavelength (nm) **n**initial **n**final

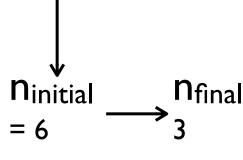
...another example...



specify the initial and final states responsible for this emission line.

...another example... (a) Infrared **Ultraviolet** radiation radiation (b) **Balmer** Lyman series series 656.3 486.1 434.0 410.2 102.6 Wavelength (nm) **n**final

...still another example... (a) Infrared **Ultraviolet** radiation radiation (b) **Balmer Lyman series** series 656.3 486.1 434.0 410.2 Wavelength (nm)



...if we were asked, we could go one step further: we could calculate the energies of n_{initial} and n_{final} and get the energy of the emitted photon.

Let's do one:

Question: Calculate the wavelength of the photon emitted when a hydrogen atom in n=7 undergoes a transition to n=3.(what is the name of this series?).

Key equation:
$$E_n = -\frac{hcR}{n^2}$$

$$hcR = 13.60 eV$$

Question: Calculate the wavelength of the photon emitted when a hydrogen atom in n=7 undergoes a transition to n=3 (what is the name of this series?).

Key equation:
$$E_n = -\frac{hcR}{n^2}$$

$$hcR = 13.60 eV$$

Step I: Calculate $E_{n=7}$ and $E_{n=3}$.

$$E_7 = -13.60/7^2 = -0.2776 \text{ eV}$$

$$E_3 = -13.60/3^2 = -1.511 \text{ eV}$$

Question: Calculate the wavelength of the photon emitted when a hydrogen atom in n=7 undergoes a transition to n=3.

Step I: Calculate $E_{n=7}$ and $E_{n=3}$.

$$E_7 = -13.60/49 = -0.2776 \text{ eV}$$

$$E_3 = -13.60/9 = -1.511 \text{ eV}$$

Step 2: Calculate ΔE ...

$$\Delta E = E_7 - E_3 = (-0.2776) - (-1.511) = 1.233 \text{ eV}$$

Step 3: Calculate ΔE ...

$$\Delta E = 1240./\lambda$$

$$\lambda = 1240./\Delta E = 1006 \text{ nm}$$

Hydrogen-like atoms

These energies work not only for hydrogen, but also to all **hydrogen-like atoms** (i.e., ANY atom with just one electron) with a nuclear charge of Z:

example:
$$\mathbf{He^{+}}$$
 (Z = 2),
 $\mathbf{Li^{2+}}$ (Z = 3),
 $\mathbf{Be^{3+}}$ (Z = 4),
 $\mathbf{Cs^{54+}}$ (Z = 55).
etc.

$$E_n = -\frac{Z^2 h c R}{n^2}$$

- I. a set of eigenstates $|\psi_n\rangle$.
- 2. a set of eigenstate energies, E_{n} .

Hydrogen atom solution:

$$E_n = -\frac{hcR}{n^2}$$
 $n = 1, 2, 3...$ hcR = 13.60 eV

$$|n,l,m_l,m_s\rangle$$
 State vectors are labeled with the quantum number n... AND three more: I, m_l, m_s

Hydrogen atom quantum numbers

$$|n,l,m_l,m_s\rangle$$

n is called the principal quantum number.

- n = 1, 2, 3....
 - I is called the orbital angular momentum quantum number.
- I = 0, 1, 2...(n-1) = s, p, d, f...
 - m_I is called the magnetic quantum number.
- $m_l = I, I-1,...-I$
 - ms is called the spin magnetic quantum number.
- m_s = 1/2, -1/2 we'll deal with this one later.

The three dimensional H atom wavefunction can be defined by the three quantum numbers n, l, and m_l .

$$\Psi_{n,l,m_l}(\mathbf{r})$$

Three Dimensional Wavefunction (Hydrogen Atom)

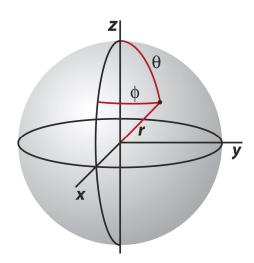
$$|n,l,m_l,m_s\rangle$$

The spin magnetic quantum number doesn't appear in the wavefunction.

The three dimensional H atom wavefunction can be defined by the three quantum numbers n, l, and m_l.

$$\Psi_{n,l,m_l}(\mathbf{r}) = R_{n,l}(r)Y_{l,m_l}(\theta,\phi)$$

 ψ is a function of r, θ and Φ (spherical coordinates)



The three dimensional H atom wavefunction can be defined by the three quantum numbers n, l, and m_l.

$$\Psi_{n,l,m_l}(\mathbf{r}) = R_{n,l}(r) Y_{l,m_l}(\theta,\phi)$$

 $R_{n,l}(\mathbf{r})$ is the radial component of the wavefunction.

R_{n,l} depends on the two quantum numbers n and l.

The three dimensional H atom wavefunction can be defined by the three quantum numbers n, l, and m_l.

$$\Psi_{n,l,m_l}(\mathbf{r}) = R_{n,l}(r) Y_{l,m_l}(\theta,\phi)$$

 $Y_{l,ml}(\theta, \phi)$ is the angular component of the wavefunction.

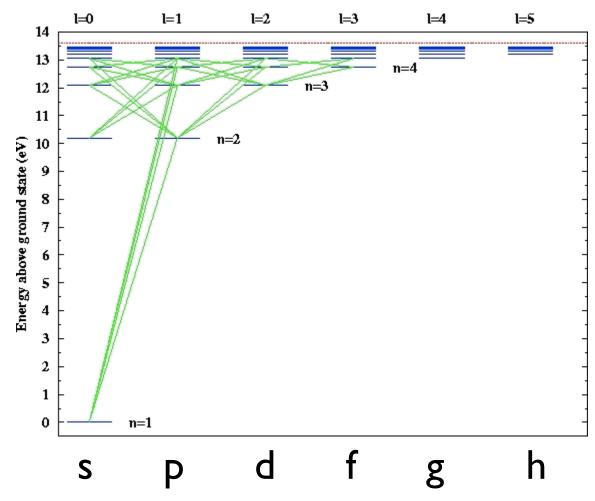
 $Y_{l,ml}$ depends on the two quantum numbers I and m_l .

TABLE 1.2 Hydrogen Wavefunctions (Atomic Orbitals), $\psi = RY$

(a) Radial wavefunctions, $R_{nl}(r)$			(b) A	(b) Angular wavefunctions, $Y_{lm_l}(\theta, \phi)$		
n	l	$R_{nl}(r)$	l	"m _l "*	$Y_{lm_l}(\mathbf{\theta}, \mathbf{\phi})$	
1	0	$2\left(\frac{Z}{a_0}\right)^{3/2} e^{-Zr/a_0}$	0	0	$\left(\frac{1}{4\pi}\right)^{1/2}$	
2	0	$\frac{1}{2\sqrt{2}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{a_0}\right) e^{-Zr/2a_0}$	1	x	$\left(\frac{3}{4\pi}\right)^{1/2}\sin\theta\cos\phi$	
	1	$\frac{1}{2\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right) e^{-Zr/2a_0}$		у	$\left(\frac{3}{4\pi}\right)^{1/2}\sin\theta\sin\phi$	
3	0	$\frac{1}{9\sqrt{3}} \left(\frac{Z}{a_0}\right)^{3/2} \left(3 - \frac{2Zr}{a_0} + \frac{2Z^2r^2}{9a_0^2}\right) e^{-Zr/3a_0}$		z	$\left(\frac{3}{4\pi}\right)^{1/2}\cos\theta$	
	1	$\frac{2}{27\sqrt{6}} \left(\frac{Z}{a_0}\right)^{3/2} \left(2 - \frac{Zr}{3a_0}\right) e^{-Zr/3a_0}$	2	xy	$\left(\frac{15}{16\pi}\right)^{1/2}\sin^2\theta\cos 2\phi$	
	2	$\frac{4}{81\sqrt{30}} \left(\frac{Z}{a_0}\right)^{3/2} \left(\frac{Zr}{a_0}\right)^2 e^{-Zr/3a_0}$		yz	$\left(\frac{15}{4\pi}\right)^{1/2}\cos\theta\sin\theta\sin\phi$	
				zx	$\left(\frac{15}{4\pi}\right)^{1/2}\cos\theta\sin\theta\cos\phi$	
				x^2-y^2	$\left(\frac{15}{16\pi}\right)^{1/2}\sin^2\theta\sin 2\varphi$	
				z^2	$\left(\frac{5}{16\pi}\right)^{1/2} (3\cos^2\theta - 1)$	

Note: In each case, $a_0 = 4\pi\epsilon_0^2/m_e^2$, or close to 52.9 pm; for hydrogen itself, Z = 1. *In all cases except $m_l = 0$, the orbitals are sums and differences of orbitals with specific values of m_l .

Hydrogen atom quantum numbers



principal

quanta n

angular momentum quanta l

A Grotrian diagram is what spectroscopists use to analyze their line spectra. Each column is for a different I quantum number. Note that only certain transitions are observed. These are called selection rules.

Still to come:

- ...Probability Densities for H atom orbitals.
- ...Spin!
- ...Aufbau principle for multielectron atoms.
- ...electron configurations of multielectron atoms.
- ...AES and Grotrian diagrams for different atoms.