
Lecture B3
Vibrational Spectroscopy



Molecular bonds can vibrate.  We model this motion with a 
"Simple Harmonic Oscillator" (SHO) using Hooke's law as a 
linear restoring force.

Classically:



where k is the force constant 
of the spring in units of N/m).

The exact classical solution depends upon the initial conditions, 
but can sometimes take the form:



The frequency of oscillation is given by ν:

ν does not depend on the displacement, A. 



Hamiltonian:

Potential Energy:

Quantum Mechanical SHO.  To get the QM solution, we 
need the potential energy stored in the SHO:

These equations are true for both the Classical and QM SHO.
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QM predicts the existence of discrete, evenly spaced, 
vibrational energy levels for the SHO.

n = 0,1,2,3...

For the ground state (n=0), E = ½hν.  
This is called the zero point energy.

Optical selection rule -- SHO can 
absorb or emit light with a ∆n = ±1

Notes: 



SHO Wavefunctions
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The SHO wavefunctions
that are solutions to the 
one dimensional 
Schrödinger equation are 
known as the 
"Hermite Polynomials."

They alternate even/odd 
symmetry/asymmetry 
about zero (parity).



SHO Probability Densities
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The SHO probability 
density for the ground state
(n=0) is centered in the 
middle of the potential.

For high energy states, the 
probability density moves 
to the edge of the potential 
window, or the 
classical turning point.



Let's start by looking at the IR absorption spectrum 
from a diatomic molecule, such as HCl:

diatomic



For diatomic molecules, there are two masses, m1 and m2.

diatomic

SHO

For the SHO, the mass m is fixed to a wall:



We define the reduced mass, μ, as:

If m2 = ∞, then μ = m1.  
(Just like the SHO).

If m2 = m1, then μ = ½m1. 



For diatomics, we can replace p2/2m in the SHO Hamiltonian with 
p2/2μ and get the same result for the energies and eigenstates:



The IR absorption spectrum for a diatomic molecule, 
such as HCl:

diatomic

Optical selection rule 1 -- SHO can 
absorb or emit light with a ∆n = ±1

Optical selection rule 2 -- a change in molecular 
dipole moment (∆μ/∆x) must occur with the 
vibrational motion. 

(Note: μ here means dipole moment).
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1I.  What is the energy of this band in wavenumbers (units: cm-1)?  

c = λν

λ=c/ν=(2.998 x 108 m s-1)/(8.660 x 1013s-1)= 3.462 microns

Example: you observe an infrared absorption band for H35Cl 
at 8.660 x 1013 s-1.

1.  What wavelength is absorbed at this energy (units: μm)?  

1/λ = 2888.59 cm-1

1 eV = 8065 cm-1
CH stretches - 3000 cm-1

C=O stretches - 1800 cm-1

CN streches - 2100 cm-1

CC stretches - 1000 cm-1

Characteristic group frequencies



Example: you observe an infrared absorption band for H35Cl 
at 8.660 x 1013 s-1.

Characteristic group frequencies



Example: you observe an infrared absorption band for H35Cl at 
8.660 x 1013 s-1.

1II.  What is the Hooke's law force constant for this stretch?



Example: you observe an infrared absorption band for H35Cl at 
8.660 x 1013 s-1.

1II.  What is the Hooke's law force constant for this stretch?



Example: you observe an infrared absorption band for H35Cl at 
8.660 x 1013 s-1.

1II.  What is the Hooke's law force constant for this stretch?

First calculate μ:



Example: you observe an infrared absorption band for H35Cl at 
8.660 x 1013 s-1.

1II.  What is the Hooke's law force constant for this stretch?

First calculate μ:

μ=(0.9796 amu)(1.661x10-27 kg/amu) = 1.627x10-27 kg



Example: you observe an infrared absorption band for H35Cl at 
8.660 x 1013 s-1.

1II.  What is the Hooke's law force constant for this stretch?

Then calculate k:

μ=(0.9796 amu)(1.661x10-27 kg/amu) = 1.626x10-27 kg

k=(1.627x10-27 kg)(2π)2(8.660 x 1013s-1 )2 = 481.6 N m-1



Example: you observe an infrared absorption band for H35Cl at 
8.660 x 1013 s-1.

1V.  Calculate the IR absorption band frequency (in cm-1) you 
expect for the isotope H37Cl.

μ = 0.9796 amu for H35Cl
μ = 1.626 x 10-27 kg for H35Cl

μ = 0.9811 amu for H37Cl
μ = 1.629 x 10-27 kg for H37Cl

37Cl has an atomic wt of 36.966.

ν(H37Cl) = (8.660 x 1013s-1 )(1.626/1.629)½ =8.652 x 1013s-1

λ=c/ν=(2.998 x 108 m s-1)/(8.652 x 1013s-1)= 3.465 microns

1/λ = 2885.9 cm-1
This is lower by 2.6 cm-1 than ν(H35Cl) 



If a more realistic Morse potential is used in the Schrödinger 
Equation, these energy levels get scrunched together...

ΔE<hν
ΔE=hν


