Lecture B3.1
Group Theory
Covalent Bond Theories

1. VSEPR (_valence shell electron pair repulsion model).
 A set of _empirical_ rules for predicting a molecular geometry using,
as input, a correct Lewis Dot representation.

2. Valence Bond theory.
 A more advanced description of orbitals in molecules. We emphasize
 just one aspect of this theory: Hybrid atomic orbitals.
 Works especially well for organic molecules.

3. Molecular Orbital theory.
 The most modern and powerful theory of bonding. Based upon QM.
Covalent Bond Theories

1. **VSEPR (valence shell electron pair repulsion model).**
 A set of *empirical* rules for predicting a molecular geometry using, as input, a correct Lewis Dot representation.

2. Valence Bond theory.
 A more advanced description of orbitals in molecules. We emphasize just one aspect of this theory: Hybrid atomic orbitals. Works especially well for organic molecules.

3. Molecular Orbital theory.
 The most modern and powerful theory of bonding. Based upon QM.
Covalent Bond Theories

1. VSEPR (valence shell electron pair repulsion model).
 A set of empirical rules for predicting a molecular geometry using, as input, a correct Lewis Dot representation.

Molecular Geometry is described by Group Theory!
Point Group Symmetry

Point group symmetry is an important property of molecules widely used in some branches of chemistry: spectroscopy, quantum chemistry and crystallography.

An individual point group is represented by a set of symmetry “elements” or operations:

- E - the identity (abbreviated to E, from the German 'Einheit' meaning Unity)
- \(C_n \) - rotation by \(2\pi/n \) angle *
- \(\sigma_s \) - reflection plane
- \(\sigma_h \) - horizontal reflection plane (perpendicular to the principal axis) **
- \(\sigma_v \) - vertical reflection plane (contains the principal axis)
- \(\sigma_d \) - diagonal reflection plane (contains the principal axis and bisects the angle between two \(C_2 \) axes perpendicular to the principal axis)
- i - Center of symmetry or inversion center. A molecule has a center of symmetry when, for any atom in the molecule, an identical atom exists diametrically opposite this center an equal distance from it. There may or may not be an atom at the center.
- \(S_n \) - improper rotation (rotation by \(2\pi/n \) angle and reflection in the plane perpendicular to the axis)

* - \(n \) is an integer
** - principal axis is a \(C_n \) axis with the biggest \(n \).

A molecule belongs to a symmetry point group if it is unchanged under all the symmetry operations of this group.
1. **Identity** is indicated as E does nothing, has no effect. All molecules/objects possess the identity operation, i.e., possess E. E has the same importance as the number 1 does in multiplication (E is needed in order to define inverses).

\[
\text{H}_2\text{O}
\]
2. **n-Fold Rotations**: C_n, where n is an integer rotation by $360°/n$ about a particular axis defined as the n-fold rotation axis.

$C_2 = 180°$ rotation, $C_3 = 120°$ rotation, $C_4 = 90°$ rotation, $C_5 = 72°$ rotation, $C_6 = 60°$ rotation, etc.

Rotation of H_2O about the axis shown by $180°$ (C_2) gives the same molecule back.

Therefore H_2O possess the C_2 symmetry element.
3. **Reflection**: \(\sigma_s \) (the symmetry element is called a mirror plane or plane of symmetry)

If reflection about a mirror plane gives the same molecule/object back than there is a plane of symmetry \(\sigma_s \).

If plane contains the principle rotation axis (i.e., parallel), it is a vertical plane \(\sigma_v \)

If plane is perpendicular to the principle rotation axis, it is a horizontal plane \(\sigma_h \)

If plane is parallel to the principle rotation axis, but bisects angle between 2 \(C_2 \) axes, it is a diagonal plane \(\sigma_d \)
H$_2$O possesses 2 σ_v mirror planes of symmetry because they are both parallel to the principle rotation axis (C$_2$)
4. **Inversion**: i (the element that corresponds to this operation is a center of symmetry or inversion center)

The operation is to move every atom in the molecule in a straight line through the inversion center to the opposite side of the molecule.

Therefore XeF_4 possesses an inversion center at the Xe atom.
5. **Improper Rotations: \(S_n \)**

\(n \)-fold rotation followed by reflection through mirror plane perpendicular to rotation axis

Note: \(n \) is always 3 or larger because \(S_1 = s \) and \(S_2 = i \).

Ethane \(\text{C}_2\text{H}_6 \)

\(S_6 \) axis
An example: H_2O

The water molecule has one C_2 axis and two σ_v symmetry planes.

It's point group is: C_{2v}
An example: H_2O

The C_{2v} Character Table:

C_{2v} Point Group

Abelian, 4 irreducible representations
Subgroups of C_{2v} point group: C_s, C_2

Character table for C_{2v} point group

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>$C_2 (z)$</th>
<th>$\sigma_v (xz)$</th>
<th>$\sigma_v (yz)$</th>
<th>linear, rotations</th>
<th>quadratic</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>z</td>
<td>x^2, y^2, z^2</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>R_z</td>
<td>xy</td>
</tr>
<tr>
<td>B_1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>x, R_y</td>
<td>xz</td>
</tr>
<tr>
<td>B_2</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>y, R_x</td>
<td>yz</td>
</tr>
</tbody>
</table>
An example: H$_2$O

Symmetry elements
An example: \(\text{H}_2\text{O} \)

Irreducible Representations
An example: H_2O

Character table for C_{2v} point group

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>$C_2 (z)$</th>
<th>$\sigma_v (xz)$</th>
<th>$\sigma_v (yz)$</th>
<th>linear, rotations</th>
<th>quadratic</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>z</td>
<td>x^2, y^2, z^2</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>R_z</td>
<td>xy</td>
</tr>
<tr>
<td>B_1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>x, R_y</td>
<td>xz</td>
</tr>
<tr>
<td>B_2</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>y, R_x</td>
<td>yz</td>
</tr>
</tbody>
</table>

C_{2v}

Number of vibrations: $3N - 6 = 3$

IR activity is denoted by x, y or z

Normal mode vibrations: $2A_1 + B_2$
An example: H$_2$O

C_{2v}

Number of vibrations: $3N - 6 = 3$

Raman activity is denoted by this column.

Normal mode vibrations: $2A_1 + B_2$
An example: H_2O

C_{2v}

Number of vibrations: $3N - 6 = 3$

Each normal mode vibration has an irreducible representation:

Normal mode vibrations: $2 \text{A}_1 + \text{B}_2$
An example: H_2O

Number of vibrations: $3N - 6 = 3$

ν_1 vibration: 3657 cm^{-1}

A_1 symmetry, OH symmetric stretch

Both IR and Raman active.
An example: H_2O

Number of vibrations: $3N - 6 = 3$

ν_2 vibration: 1595 cm^{-1}

A_1 symmetry, OH bend

Both IR and Raman active.
An example: H_2O

Number of vibrations: $3N - 6 = 3$

ν_3 vibration: 3756 cm$^{-1}$

B_2 symmetry, OH asymmetric stretch

IR and Raman active.
There are only a finite number of molecular symmetry groups.

We can use a flowchart to find them if we can find all of the symmetry elements.
We can use a flowchart to find them if we can find all of the symmetry elements.
Seesaw Geometry
PCl$_5$
XeF$_4$
SF_6