Lecture B4 Vibrational Spectroscopy, Part 2

Quantum Mechanical SHO.

$$\hat{H}|\Psi_n\rangle = E_n|\Psi_n\rangle$$

WHEN we solve the Schrödinger equation, we always obtain two things:

- I. a set of eigenstates, $|\psi_n\rangle$.
- 2. a set of eigenstate energies, E_n

QM predicts the existence of discrete, evenly spaced, vibrational energy levels for the SHO.

Notes:

- For the ground state (n=0), $E = \frac{1}{2}hV$. This is called the zero point energy.
- Optical selection rule -- SHO can absorb or emit light with a $\Delta n = \pm 1$

The IR absorption spectrum for a diatomic molecule, such as HCI:

H——Cl
diatomic
mı-JUUL m2

Optical selection rule I -- SHO can absorb or emit light with a $\Delta n = \pm I$

Optical selection rule 2 -- a change in molecular dipole moment $(\Delta \mu/\Delta x)$ must occur with the vibrational motion.

(Note: μ here means dipole moment).

If a more realistic Morse potential is used in the Schrödinger Equation, these energy levels get scrunched together...

The vibrational spectroscopy of polyatomic molecules gets more interesting...

For diatomic or linear molecules: 3N-5 modes

For nonlinear molecules: 3N-6 modes

N = number of atoms in molecule

The vibrational spectroscopy of polyatomic molecules gets more interesting...

Optical selection rule I -- SHO can absorb or emit light with a $\Delta n = \pm I$

Consider H₂O (a nonlinear molecule):

$$3N-6 = 3(3)-6 = 3$$

Consider H₂O (a nonlinear molecule):

$$3N-6 = 3(3)-6 = 3$$

All bands are observed in the IR spectrum.

Consider CO₂ (a linear molecule):

$$3N-5 = 3(3)-5 = 4$$

Consider CO₂ (a linear molecule):

$$3N-5 = 3(3)-5 = 4$$

The motion of the symmetrical stretch (V_I) does not create a new dipole moment, so it is not observed in the IR spectrum.

Let's break down the antisymmetric CO_2 stretch to see if the molecular dipole moment varies during this vibration.

...what about the bend?

Summary:

- ... CO_2 has 3N-5 = 4 vibrational modes: 2 "degenerate" bends (V = 667 cm⁻¹) I asymmetric stretch. (V = 2349 cm⁻¹) I symmetric stretch. (V = 1380 cm⁻¹)
- ... Three of these modes alter the dipole moment of the molecule (both bends and the asym stretch); one does not (the sym stretch).
- ...This means that CO₂ can absorb and radiate IR light at energies corresponding to 667 cm⁻¹ and 2349 cm⁻¹, even though it has no permanent dipole moment.

HCI IR absorption spectrum in the gas phase:

In the gas phase, the lineshape of the IR absorption bands molecules becomes broad.

HCI IR absorption spectrum in the gas phase:

At high resolution, MANY lines are observed. This splitting of the vibrational spectrum is due to the presence of many rotational quantum states.

HCI IR absorption spectrum in the gas phase:

BTW -- a very high resolution spectrum of HCl shows PAIRS of bands due to H³⁵Cl and H³⁷Cl.

Symmetric stretches ARE NOT observed in the IR spectrum. But they ARE observed in another type of vibrational spectroscopy: Raman scattering

CCI₄ Raman Spectrum

Raman scattering: Inelastic light scattering

C.V. Raman 1888-1970

1930 Nobel Prize in Physics

Raman scattering: Inelastic light scattering

Vibrational Raman scattering occurs when incident light induces a molecular dipole moment via the molecular polarizability. This dipole moment radiates light at a new wavelength, as determined by the energy levels of the molecule.

C.V. Raman 1888-1970

1930 Nobel Prize in Physics

Vibrational Raman scattering

Induced molecular dipole moment:

$$\mu = \alpha E$$

 α is the molecular polarizability.

$$E(t) = E_0 \cos(\omega_0 t)$$

$$\alpha(t) = \alpha_0 + \alpha_{vib} \cos(\omega_{vib} t)$$

$$\mu(t) = \alpha(t)E(t)$$

 ω_0 is a visible frequency ω_{vib} is a vibrational (IR) frequency

Three colors are scattered from the molecules:

 ω_0 is called Rayleigh Scattering ω_0 - ω_{vib} is called Stokes Raman Scattering ω_0 + ω_{vib} is called Anti-Stokes Raman Scattering

$$\begin{split} &\mu(t) = \alpha_0 E_0 \cos(\omega_0 t) \\ &+ \frac{1}{2} \alpha_{vib} E_0 \bigg[\bigg[\cos \Big(\omega_0 + \omega_{vib} \Big) t \bigg] + \bigg[\cos \Big(\omega_0 - \omega_{vib} \Big) t \bigg] \bigg] \end{split}$$

Three colors are scattered from the molecules:

 ω_0 is called Rayleigh Scattering ω_0 - ω_{vib} is called Stokes Raman Scattering ω_0 + ω_{vib} is called Anti-Stokes Raman Scattering

$$\begin{split} \mu(t) &= \alpha_0 E_0 \cos(\omega_0 t) \\ &+ \frac{1}{2} \alpha_{vib} E_0 \bigg[\cos(\omega_0 + \omega_{vib}) t \bigg] + \bigg[\cos(\omega_0 - \omega_{vib}) t \bigg] \bigg) \end{split}$$

Three colors are scattered from the molecules:

 ω_0 is called Rayleigh Scattering ω_0 - ω_{vib} is called Stokes Raman Scattering ω_0 + ω_{vib} is called Anti-Stokes Raman Scattering

$$\begin{split} &\mu(t) = \alpha_0 E_0 \cos(\omega_0 t) \\ &+ \frac{1}{2} \alpha_{vib} E_0 \bigg[\bigg[\cos \Big(\omega_0 + \omega_{vib} \Big) t \bigg] + \bigg[\cos \Big(\omega_0 - \omega_{vib} \Big) t \bigg] \bigg) \end{split}$$

Three colors are scattered from the molecules:

- $igoplus_0$ is called Rayleigh Scattering
- ω_0 ω_{vib} is called Stokes Raman Scattering
- $\omega_0 + \omega_{vib}$ is called Anti-Stokes Raman Scattering

Vibrational Raman scattering - QM description

ω₀ is called Rayleigh Scatteringω₀ is called Stokes Paman Sca

 ω_0 - ω_{vib} is called Stokes Raman Scattering

 ω_0 + ω_{vib} is called Anti-Stokes Raman Scattering

Vibrational Raman scattering selection rules

$$\begin{split} &\mu(t) = \alpha_0 E_0 \cos(\omega_0 t) \\ &+ \frac{1}{2} \alpha_{vib} E_0 \bigg[\bigg[\cos \Big(\omega_0 + \omega_{vib} \Big) t \bigg] + \bigg[\cos \Big(\omega_0 - \omega_{vib} \Big) t \bigg] \bigg) \end{split}$$

For a normal mode vibration to be Raman active, $\Delta \alpha/\Delta x$ must be non-zero: the vibration must change the molecular polarizability.

Symmetric modes can have large changes in molecular polarizability.

3000 cm⁻¹ CH breathing mode

Vibrational Raman scattering

$$\lambda_0 = 500 \text{ nm}$$

 $\omega_0 = 20,000 \text{ cm}^{-1}$

$$\omega_{S} = \omega_{0} - \omega_{vib}$$
 $\omega_{S} = 20,000 - 3000 \text{ cm}^{-1}$

$$\omega_{\rm S} = 16,000 \, \rm cm^{-1}$$

$$\lambda_S = 625 \text{ nm}$$

Benzene

 ω_0 - ω_{vib} is called Stokes Raman Scattering

Vibrational Raman scattering

$$\lambda_0 = 650 \text{ nm}$$

 $\omega_0 = 15,385 \text{ cm}^{-1}$

$$\omega_{AS} = \omega_0 + \omega_{vib}$$
 $\omega_{AS} = 15,385 + 3000 \text{ cm}^{-1}$
 $\omega_{AS} = 18,385 \text{ cm}^{-1}$

$$\lambda_{AS} = 544 \text{ nm}$$

Benzene

 ω_0 + ω_{vib} is called Anti-Stokes Raman Scattering