Lecture C4b

Microscopic to Macroscopic, Part 4:
X-Ray Diffraction and Crystal Packing



X-ray Diffraction

Max von Laue won the 1914 Nobel Prize
“for his discovery of the diffraction of
x-rays by crystals.”

His measurements showed that x-rays were
photons, and additional value of his work
came in the relation of the x-ray diffraction
patterns to crystal structure.

He later went on to direct the
Fritz Haber Institute in Berlin in 1951.

Max von Laue (1879-1960)



X-Rays are photons:
A=10nmto |0 pm
V = 3el6 to 3el9 Hz

KB E=124 ev to |24 keV
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X-Rays are photons:

The transitions are labelled K
if the final state is n=1 (Is),
and L if the final state is n=2

(2s or 2p).
K
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. The transitions are
. 5~ sub-labelled o By
5 z based on the initial
& >\ state of the electron

that is filling the hole.



X-ray Diffraction

A monochromatic x-ray beam passing
through an Al foil creates a pattern of
rings on a photographic plate.

These diffraction rings are observed
at specific angles relative to the
crystal surface.




The W. H. Bragg/WV L. Bragg father and son team won the 1915

Nobel Prize (the very next year) for providing a quantitative
understanding of these diffraction patterns.

n\ = 2dsinO

where

n = integer order of diffraction.
A= wavelength,

d = crystal spacing,
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O = angle of x-rays relative to surface.

William H. Bragg  William L. Bragg
(1862 — 1942) (1890 — 1971)




To understand the Bragg equation, let's first remember
the concepts of constructive and destructive interference:
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Bragg Diffraction
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Constructive interference between x-rays reflected from two
adjacent atomic layers leads to angle dependent diffraction.



Let’s derive the Bragg Eq.: |. Compared to ray |, ray 2
travels an extra distance

BC + CB’ = 2BC.
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Let’s derive the Bragg Eq.: |. Compared to ray |, ray 2
travels an extra distance
BC + CB’ = 2BC.
2. This extra distance must equal a multiple of
A in order for the interference with ray |

to be constructive: n\ = 2BC.
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Let’s derive the Bragg Eq.: |. Compared to ray |, ray 2
travels an extra distance
BC + CB’ = 2BC.
2. This extra distance must equal a multiple of
A in order for the interference with ray |

to be constructive: n\ = 2BC.
3.Since AC is the hypothenuse of a right triangle

ABC, BC = dsin0.
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Let’s derive the Bragg Eq.: |. Compared to ray |, ray 2
travels an extra distance
BC + CB’ = 2BC.
2. This extra distance must equal a multiple of
A in order for the interference with ray |

to be constructive: n\ = 2BC
3.Since AC is the hypothenuse of a right triangle

ABC, BC = dsin®.
4.So, nA\= 2BC = 2dsin© Q.E.D.
ray |
Inciden? N Reflected
rays /7» rays
ray 2
ay &
Ist layer
= = =l = = O— — @ — - ‘
of atoms
2nd layer

of atoms
C



Thus, when 2dsin® = nA, there is constructive interference.
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Let’s do an example:

A polycrystalline sample scatters a beam of x-rays of wavelength 0.7093A

at an angle of 20 of 14.66°. If this is a second-order Bragg reflection

(n=2), compute the distance between the parallel planes of atoms from
which the scattered beam appears to have been reflected.



Let’s do an example:

A polycrystalline sample scatters a beam of x-rays of wavelength 0.7093A

at an angle of 20 of 14.66°. If this is a second-order Bragg reflection
(n=2), compute the distance between the parallel planes of atoms from
which the scattered beam appears to have been reflected.

solution: |) Solve the Bragg’s Law for d:

nA

d=—
2SN




Let’s do an example:

A polycrystalline sample scatters a beam of x-rays of wavelength 0.7093A

at an angle of 20 of 14.66°. If this is a second-order Bragg reflection
(n=2), compute the distance between the parallel planes of atoms from
which the scattered beam appears to have been reflected.

solution: |) Solve the Bragg’s Law for d:

nA

d=—
2SN

2) Substitute:

g N 2(0.7093A)
2sin0  2sin(14.66/2)

559A

Voila!



Photographic
film

Bragg Equation:
nA = 2dsin0

rystal
l X-ray beam

X-Ray Diffraction yields lattice
parameters & atomic positions

Electron
beam




Why Rings!

Thin foil Single Crystal

Polycrystalline Samples give ring patterns. Single
crystal samples yield two dimensional arrays of spots.



Polycrystalline samples average over all orientations.

“grain
L. boundary”
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In a sufficiently large, randomly
oriented polycrystalline
sample (e.g. a powder), there
are a large number of small
crystallites.

A beam impinging on the sample .
will find a representative Incident
number of crystallites in the Beam

Diffracted
Beam

right orientation for diffraction
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Powder XRD Measurements

The XRD powder pattern
can be used to determine
the lattice parameters of
the crystal.

As the sample is
rotated through an

angle O, the detector
nheeds to be rotated

through an angle 20

Source: X-Ray tube
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A typical XRD powder pattern. The data is usually
plotted as a function of 20 (detector travel).

Polycrystalline Iron
(110)
% $ (211)
: Es (200)
20 30 40 50 60 70 80 90 100

Diffraction angle 260

Ficure 3.20 Diffraction pattern for polycrystalline a-iron.



A typical XRD powder pattern. The data is usually
plotted as a function of 20 (detector travel).

—_— 84-1286 Anatase

— Expenmental Data

A mixture of the two phases of TiO;
Anatase and Rutile
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Let's take a look at the possible diffraction patterns for this 2-D crystal.

d = a for this diffraction ring.



Let's take a look at the possible diffraction patterns for this 2-D crystal.

d # a, diffraction occurs at a different angle



Let's take a look at the possible diffraction patterns for this 2-D crystal.
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d # a, diffraction occurs at yet another different angle



The various diffraction peaks are identified with Miller indices.
(We won't go into how to get these, but it's not hard.).

(110)

(001) (100) (010)

N \

(211)

(101) (110) (O1T)
(200)

MWM

50 60 70 80 (111) (171) 111)

Diffraction angle 26

Diffraction peaks at (110), (200) and (211)



Single Crystal X-Ray Measurements

Thin foil Single Crystal

Polycrystalline samples give ring patterns. Single
crystal samples yield two dimensional arrays of spots,
and can be used to determine the atomic positions in

the unit cell.



Single Crystal X-Ray Measurements

LaueData { 1. 0. 0.) fcc

XRD pattern for diffraction from the
(1,0,0) face of an fcc crystal

Simple lattice types are
easy to characterize,
but more complex
crystals require more
sophisticated data analysis.



The good news is that nowadays,
ANY molecule that crystallizes into a regular
lattice can be analyzed. Even proteins!

Diffracted
rays




X-ray diffraction-quality
crystals. (a) A typical
crystal of Y. pestis SspA
with dimensions of 0.] X
0.1 x 0.1 mm. (b) X-ray
diffraction at 2.0 A of
the crystal at the
National Synchrotron
Light Source.

(b)



ots of diffraction spots are obtained from many
different incident angles on the crystal.




In the case of complex molecules, crystal

we use the x-ray diffraction data to

produce a model, back calculate

the pattern again, and adjust

the model until it fits the pattern. diffraction
pattern
electron

refinement

density map

atomic

f‘Jw model




RNA polymerase - MW=400 kDa or 400,000 g/mol

Structure obtained from the X-ray diffraction data!



RNA Ribosome 508 subunit

5% The Nobel Prize in Chemistry 2009

Venkatraman Ramakrishnan, Thomas A. Steitz, Ada E. Yonath

Venkatraman Thomas A. Steitz Ada E. Yonath
Ramakrishnan

The Nobel Prize in Chemistry 2009 was awarded jointly to Venkatraman
Ramakrishnan, Thomas A. Steitz and Ada E. Yonath "for studies of the structure
and function of the ribosome",

Structure obtained from the X-ray diffraction data!



50S Subunit of the Ribsome

5S rRNA region » o

Figure 4. The path to the 50S subunit structure at high resolution. The 50S subunit structure at 9A
resolution (left, 1998), SA resolution (middle, 1999) and 2.4A resolution (right, 2000) (From Ban et al.,
1998; 1999; 2000).

The model of 50S determined 1n 2000 by the Steitz lab includes
2711 of the 2923 nucleotides of 23S rRNA, all 122 nucleotides of
its 5S rRNA, and structure of 27 of 1ts 31 proteins.

Structure obtained from the X-ray diffraction data!



X-Ray Diffraction yields lattice
parameters & atomic positions

rystal
l X-ray beam

X-ray tube

Photographic
film

Lead
Bragg Equation: screen

nA\ = 2dsinO Electron

beam

Let's use this data to understand crystal packing!



Back to the Future: Crystal Packing (again!)

For crystals of elemental solids,
there are some fundamental
packing structures:

fcc (Face Centered Cubic)

bcec (Body Centered Cubic)

hcp (Hexagonally Close Packed)
Diamond Structure

simple hody-centered

Rhombohedral

Hexagonal Triclinic

We have looked at the fcc and
bcc crystal lattices previously.




Face-Centered Cubic (fcc) Crystal Lattice

r = (v/2/4)a

< >

Atomic radius

4 atoms/unit cell

] f=c:C5 é\é‘%ogm 74% packing efficiency

r = 186.0 pm

Also called cubic close packed (ccp)



Body-Centered Cubic (bcc) Crystal Lattice

N A, - = (v3/4)a

' / |7 2r

7 = < >
AN a
.a\' ', Atomic radius
a
2 atoms/unit cell
bec Lithium 68% packing efficiency
a = 349.0 pm

r=151.1 pm



Hexagonal Close Packed (hcp) Crystal Lattice

Rhombohedral unit cell
(60°angle) -

— —
- -‘q_q-

AB =r
BC = (v3/3)r

AC = (2+/3/3)r




Hexagonal Close Packed (hcp) Crystal Lattice

Rhombohedral unit cell -
(60° angle) r = al2

——
- -

2 atoms/unit cell

/4% packing efficiency

Examples: Co, Ti, Ru

Co:r =125 pm
Ru:r =134 pm
Ti:r =147 pm




Hexagonal Close Packed (hcp) Crystal Lattice

Hexagonal unit cell Rhombohedral unit cell




Hexagonal Close Packed (hcp) Crystal Lattice

hcp versus fcc packing:




In addition to fcc, bcc and hcp, there is the Diamond Lattice:

The diamond lattice is a is a face-centered lattice,
with 4 additional atoms also occupying half of the
tetrahedral interstices.

Examples: Carbon, Silicon and Germanium.



In addition to fcc, bcc and hcp, there is the Diamond Lattice:

r = (+/3/8)a

8 atoms/unit cell

34% packing efficiency

The diamond lattice is a is a face-centered lattice,
with 4 additional atoms also occupying half of the
tetrahedral interstices.

Examples: Carbon, Silicon and Germanium.



Question: The density of silicon is 2.33 g/cm3. Calculate the
lattice constant and Si-Si distance in a Si crystal.

mass mass

density = =
volume 3°
mass
=23
\ density
ass — (8atoms) 28.09g / mol _3.7317x102g

diaunitcell 6.022x10%°atoms / mol



Question: The density of silicon is 2.33 g/cm3. Calculate the
lattice constant and Si-Si distance in the crystal.

mass = 3.7317x10%g

mass 3.7317x107%2

s e 39 _ 5.4306x108cm = 5.434
iy 339/ cm

00

0

a = 543 pm

Si-Si distance =2r = 2(+/3/8)a = 235 pm



Compound Lattices
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An example: zinc blende (ZnS) structure

3D view!

ionic bonding or covalent bonding?



An example: zinc blende (ZnS) structure

Atoms of one type occupy FCC lattice positions

Top view:




An example: zinc blende (ZnS) structure

Atoms of second type fill half of the
tetrahedral holes (diamond lattice).

:'/" '\\.'. C. .’\\':.
N Ny
Top view:

o
1 (TN |




Let’s calculate the packing efficiency for a fcc crystal:

the packing efficiency, f, is the ratio between the
volume of the atoms in the unit cell,Vatoms, and the
total unit cell volume,Veli:




Let’s calculate the packing efficiency for a fcc crystal:

using 4r = \/Ea,the total volume of the fcc unit cell is just:

(ar)  64r®

V2] 242

3
Veey =@ =

taking the ratio between Vaioms and Ve, we get:

167r°  16m
f _ Vatoms 3 T 327{’\/7

cell 064r ] 64 3(64)

o2 242




