Lecture C4b
 Microscopic to Macroscopic, Part 4: X-Ray Diffraction and Crystal Packing

X-ray Diffraction

Max von Laue won the 1914 Nobel Prize "for his discovery of the diffraction of x-rays by crystals."

His measurements showed that x-rays were photons, and additional value of his work came in the relation of the x-ray diffraction patterns to crystal structure.

He later went on to direct the Fritz Haber Institute in Berlin in 1951.

Max von Laue (1879-1960)

X-Rays are photons:

$$
\lambda=10 \mathrm{~nm} \text { to } 10 \mathrm{pm}
$$

X-Rays are photons:

The transitions are labelled K if the final state is $n=I(\mid s)$,

The transitions are sub-labelled $\alpha \beta \gamma \ldots$ based on the initial state of the electron that is filling the hole.

X-ray Diffraction

A monochromatic x-ray beam passing through an Al foil creates a pattern of rings on a photographic plate.

These diffraction rings are observed at specific angles relative to the crystal surface.

The W. H. Bragg/W L. Bragg father and son team won the 1915 Nobel Prize (the very next year) for providing a quantitative understanding of these diffraction patterns.

$\mathrm{n} \lambda=2 \mathrm{~d} \sin \theta$

where
$\mathrm{n}=$ integer order of diffraction.
$\lambda=$ wavelength,
$\mathrm{d}=$ crystal spacing,
$\theta=$ angle of x-rays relative to surface.

William H. Bragg (1862-1942)

William L. Bragg
(1890-1971)

To understand the Bragg equation, let's first remember the concepts of constructive and destructive interference:

constructive

Sum

destructive

Bragg Diffraction

Constructive interference between x-rays reflected from two adjacent atomic layers leads to angle dependent diffraction.

Let's derive the Bragg Eq.:
I. Compared to ray I, ray 2 travels an extra distance $B C+C B^{\prime}=2 B C$.

I. Compared to ray I, ray 2 travels an extra distance $B C+C B^{\prime}=2 B C$.
2. This extra distance must equal a multiple of λ in order for the interference with ray l to be constructive: $n \lambda=2 B C$.
I. Compared to ray I, ray 2 travels an extra distance $B C+C B^{\prime}=2 B C$.
2. This extra distance must equal a multiple of λ in order for the interference with ray I to be constructive: $n \lambda=2 B C$.
3. Since $A C$ is the hypothenuse of a right triangle $A B C, B C=d \sin \theta$.

Let's derive the Bragg Eq.:
I. Compared to ray I, ray 2 travels an extra distance $B C+C B^{\prime}=2 B C$.
2. This extra distance must equal a multiple of
λ in order for the interference with ray I to be constructive: $\mathrm{n} \lambda=2 \mathrm{BC}$
3. Since $A C$ is the hypothenuse of a right triangle $A B C, B C=d \sin \theta$.
4. So, $\mathbf{n} \boldsymbol{\lambda}=\mathbf{2 B C}=\mathbf{2 d} \boldsymbol{\operatorname { s i n }} \theta \quad$ Q.E.D.

Thus, when $2 \mathrm{~d} \sin \theta=\mathrm{n} \lambda$, there is constructive interference.

Let's do an example:
A polycrystalline sample scatters a beam of x-rays of wavelength $0.7093 \AA$ at an angle of 2Θ of 14.66°. If this is a second-order Bragg reflection ($\mathrm{n}=2$), compute the distance between the parallel planes of atoms from which the scattered beam appears to have been reflected.

Let's do an example:
A polycrystalline sample scatters a beam of x-rays of wavelength $0.7093 \AA$ at an angle of 2Θ of 14.66°. If this is a second-order Bragg reflection $(\mathrm{n}=2)$, compute the distance between the parallel planes of atoms from which the scattered beam appears to have been reflected.
solution: I) Solve the Bragg's Law for d:

$$
\mathrm{d}=\frac{\mathrm{n} \lambda}{2 \sin \theta}
$$

Let's do an example:
A polycrystalline sample scatters a beam of x-rays of wavelength $0.7093 \AA$ at an angle of 2Θ of 14.66°. If this is a second-order Bragg reflection $(\mathrm{n}=2)$, compute the distance between the parallel planes of atoms from which the scattered beam appears to have been reflected.
solution: I) Solve the Bragg's Law for d:

$$
\mathrm{d}=\frac{\mathrm{n} \lambda}{2 \sin \theta}
$$

2) Substitute:

$$
d=\frac{n \lambda}{2 \sin \theta}=\frac{2(0.7093 A)}{2 \sin (14.66 / 2)}=5.559 \AA
$$

Why Rings?

Thin foil

Single Crystal

Polycrystalline Samples give ring patterns. Single crystal samples yield two dimensional arrays of spots.

Polycrystalline samples average over all orientations.

a "grain"

In a sufficiently large, randomly oriented polycrystalline sample (e.g. a powder), there are a large number of small crystallites.

A beam impinging on the sample will find a representative number of crystallites in the right orientation for diffraction

Powder XRD Measurements

The XRD powder pattern can be used to determine the lattice parameters of the crystal.

As the sample is rotated through an angle θ, the detector needs to be rotated through an angle 2θ

A typical XRD powder pattern. The data is usually plotted as a function of 2θ (detector travel).

Figure 3.20 Diffraction pattern for polycrystalline α-iron.

A typical XRD powder pattern. The data is usually plotted as a function of 2θ (detector travel).

Let's take a look at the possible diffraction patterns for this 2-D crystal.

Let's take a look at the possible diffraction patterns for this 2-D crystal.

$d \neq a$, diffraction occurs at a different angle

Let's take a look at the possible diffraction patterns for this 2-D crystal.

$d \neq a$, diffraction occurs at yet another different angle

The various diffraction peaks are identified with Miller indices. (We won't go into how to get these, but it's not hard.).

Diffraction angle 2θ
Diffraction peaks at (IIO), (200) and (2 I I)

Single Crystal X-Ray Measurements

Thin foil

Single Crystal

Polycrystalline samples give ring patterns. Single crystal samples yield two dimensional arrays of spots, and can be used to determine the atomic positions in the unit cell.

Single Crystal X-Ray Measurements

LaueData (1. 0. 0.) foc

Simple lattice types are easy to characterize, but more complex crystals require more sophisticated data analysis.

XRD pattern for diffraction from the $(1,0,0)$ face of an fcc crystal

The good news is that nowadays, ANY molecule that crystallizes into a regular

X-ray diffraction-quality crystals. (a) A typical crystal of Y. pestis SspA with dimensions of $0.1 \times$ $0.1 \times 0.1 \mathrm{~mm}$. (b) X-ray diffraction at $2.0 \AA$ of the crystal at the National Synchrotron Light Source.

(a)

Lots of diffraction spots are obtained from many different incident angles on the crystal.

In the case of complex molecules, we use the x-ray diffraction data to produce a model, back calculate the pattern again, and adjust the model until it fits the pattern.

RNA polymerase - $\mathrm{MW} \approx 400 \mathrm{kDa}$ or $400,000 \mathrm{~g} / \mathrm{mol}$

Structure obtained from the X-ray diffraction data!

RNA Ribosome 50S subunit

The Nobel Prize in Chemistry 2009
Venkatraman Ramakrishnan, Thomas A. Steitz, Ada E. Yonath

Photo: U. Montan
Venkatraman
Ramakrishnan

Photo: U. Montan
Thomas A. Steitz

Photo: U. Montan
Ada E. Yonath

The Nobel Prize in Chemistry 2009 was awarded jointly to Venkatraman Ramakrishnan, Thomas A. Steitz and Ada E. Yonath "for studies of the structure and function of the ribosome".

Structure obtained from the X-ray diffraction data!

50S Subunit of the Ribsome

Figure 4. The path to the 50 S subunit structure at high resolution. The 50 S subunit structure at $9 \AA$ resolution (left, 1998), $5 \AA$ resolution (middle, 1999) and $2.4 \AA$ resolution (right, 2000) (From Ban et al., 1998; 1999; 2000).

The model of 50S determined in 2000 by the Steitz lab includes 2711 of the 2923 nucleotides of 23 S rRNA, all 122 nucleotides of its 5 S rRNA, and structure of 27 of its 31 proteins.

Structure obtained from the X-ray diffraction data!

Back to the Future: Crystal Packing (again!)

For crystals of elemental solids, there are some fundamental packing structures:

fcc (Face Centered Cubic) bcc (Body Centered Cubic) hcp (Hexagonally Close Packed)
Diamond Structure

We have looked at the fcc and bcc crystal lattices previously.

Face-Centered Cubic (fcc) Crystal Lattice

$$
r=(\sqrt{ } 2 / 4) a
$$

Atomic radius
4 atoms/unit cell
fcc Argon

$$
\begin{aligned}
& \mathrm{a}=526.0 \mathrm{pm} \\
& \mathrm{r}=186.0 \mathrm{pm}
\end{aligned}
$$

74\% packing efficiency

Also called cubic close packed (ccp)

Body-Centered Cubic (bcc) Crystal Lattice

$$
r=(\sqrt{ } 3 / 4) a
$$

Atomic radius

2 atoms/unit cell

bcc Lithium
$\mathrm{a}=349.0 \mathrm{pm}$
$r=151.1 \mathrm{pm}$

Hexagonal Close Packed (hcp) Crystal Lattice

Rhombohedral unit cell
(60° angle)

$r=a / 2$

$$
\begin{aligned}
& A B=r \\
& B C=(\sqrt{ } 3 / 3) r
\end{aligned}
$$

$$
A C=(2 \sqrt{ } 3 / 3) r
$$

Hexagonal Close Packed (hcp) Crystal Lattice

Rhombohedral unit cell
(60° angle)

$$
r=a / 2
$$

2 atoms/unit cell
74\% packing efficiency

Examples: Co,Ti, Ru

$$
\begin{aligned}
& \text { Co: } r=125 \mathrm{pm} \\
& \text { Ru: } \mathrm{r}=134 \mathrm{pm} \\
& \text { Ti: } r=147 \mathrm{pm}
\end{aligned}
$$

Hexagonal Close Packed (hcp) Crystal Lattice

Hexagonal unit cell
Rhombohedral unit cell

Hexagonal Close Packed (hcp) Crystal Lattice

 hcp versus fcc packing:

In addition to fcc, bcc and hcp, there is the Diamond Lattice:

The diamond lattice is a is a face-centered lattice, with 4 additional atoms also occupying half of the tetrahedral interstices.

In addition to fcc, bcc and hcp, there is the Diamond Lattice:

$$
r=(\sqrt{ } 3 / 8) a
$$

8 atoms/unit cell
34\% packing efficiency

The diamond lattice is a is a face-centered lattice, with 4 additional atoms also occupying half of the tetrahedral interstices.

Question: The density of silicon is $2.33 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate the lattice constant and Si-Si distance in a Si crystal.

$$
\text { density }=\frac{\text { mass }}{\text { volume }}=\frac{\text { mass }}{a^{3}}
$$

$$
a=\sqrt[3]{\frac{\text { mass }}{\text { density }}}
$$

mass $=\frac{(8 \text { atoms })}{\text { dia.unitcell }} \frac{28.09 \mathrm{~g} / \mathrm{mol}}{6.022 \times 10^{23} \text { atoms } / \mathrm{mol}}=3.7317 \times 10^{-22} \mathrm{~g}$

Question: The density of silicon is $2.33 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate the lattice constant and Si-Si distance in the crystal.

$$
\begin{gathered}
\text { mass }=3.7317 \times 10^{-22} g \\
a=\sqrt[3]{\frac{\text { mass }}{\text { density }}}=\sqrt[3]{\frac{3.7317 \times 10^{-22} g}{2.33 g / \mathrm{cm}^{3}}}=5.4306 \times 10^{-8} \mathrm{~cm}=5.43 \AA \\
a=543 \mathrm{pm}
\end{gathered}
$$

$$
\text { Si-Si distance }=2 r=2(\sqrt{ } 3 / 8) \mathrm{a}=235 \mathrm{pm}
$$

Compound Lattices:

$Q=\mathrm{Ti}^{\mathrm{iV}}$

An example: zinc blende (ZnS) structure

3D view!
ionic bonding or covalent bonding?

An example: zinc blende (ZnS) structure
Atoms of one type occupy FCC lattice positions

Top view:

An example: zinc blende (ZnS) structure
Atoms of second type fill half of the tetrahedral holes (diamond lattice).

Top view:

Let's calculate the packing efficiency for a fcc crystal:

the packing efficiency, f, is the ratio between the volume of the atoms in the unit cell, $\mathrm{V}_{\text {atoms }}$, and the total unit cell volume, $\mathrm{V}_{\text {cell }}$:

$$
f=\frac{V_{\text {atoms }}}{V_{\text {cell }}}
$$

since it contains four atoms, the fcc unit cell is characterized by:

$$
V_{\text {atoms }}=4\left(\frac{4}{3} \pi r^{3}\right)=\frac{16 \pi r^{3}}{3}
$$

Let's calculate the packing efficiency for a fcc crystal:
using $4 r=\sqrt{2} a$, the total volume of the fcc unit cell is just:

$$
V_{\text {cell }}=a^{3}=\left(\frac{4 r}{\sqrt{2}}\right)^{3}=\frac{64 r^{3}}{2 \sqrt{2}}
$$

taking the ratio between $V_{\text {atoms }}$ and $V_{\text {cell }}$, we get:

$$
f=\frac{V_{\text {atoms }}}{V_{\text {cell }}}=\frac{\frac{16 \pi r^{3}}{3}}{\frac{64 r^{3}}{2 \sqrt{2}}}=\frac{\frac{16 \pi}{3}}{\frac{64}{2 \sqrt{2}}}=\frac{32 \pi \sqrt{2}}{3(64)}=0.74
$$

