Magnetic Materials

From Akita, Japan

Fe₃O₄

RWF Chemistry H2A
We will learn how to predict the *paramagnetic properties* of a molecule from MO theory, based on whether it possesses unpaired electrons:

For a molecule, there are two possibilities:

Diamagnetic: All electrons are paired.

Paramagnetic: Unpaired electrons are present.
We will learn how to predict the *paramagnetic properties* of a molecule from MO theory, based on whether it possesses unpaired electrons:

For a molecule, there are two possibilities:

Diamagnetic: All electrons are paired.

Paramagnetic: Unpaired electrons are present.

\[\mu = \chi H \]

- \(\mu \) is the induced magnetic dipole.
- \(\chi \) is the magnetic susceptibility.
- \(H \) is the applied magnetic field.

\(\chi < 0: \) Diamagnetic

\(\chi > 0: \) Paramagnetic
Paramagnetic molecules are attracted by a magnetic field.}

\[\mu = \chi H \]

\(\chi < 0: \) Diamagnetic

\(\chi > 0: \) Paramagnetic

Paramagnetic molecules are attracted by a magnetic field.
Additionally, there are ferromagnetic, ferrimagnetic and antiferromagnetic materials. The magnetic structure of these materials is complicated and involves the interaction of many spins.

- **Ferromagnetism**: Fe
- **Ferrimagnetism**: Fe₃O₄ (Magnetite)
- **Antiferromagnetism**: Fe₂O₃ (Hematite)
Magnetic Materials

Paramagnetism is actually quite weak. Ferromagnetism is much stronger.

\[\text{Paramagnetism} \quad O_2 \]

\[\text{Ferromagnetism} \quad \text{Fe, Co, Ni} \]
Ferromagnetic materials have domains that can be permanently oriented with an external B field.
Permanent magnets are used for many things:

Electrical Transformers
Permanent magnets are used for many things:

BIG Electrical Transformers
Permanent magnets are used for many things:

Magnetic Memories and Disk Storage
Permanent magnets are used for many things:

- Ferromagnetic Fe
- Magnetic Nanoparticles
- SUPERparamagnetic Fe$_3$O$_4$!
Permanent magnets are used for many things.

Some interesting new magnetic materials that exhibit large magnetization:

- $\text{Nd}_2\text{Fe}_{14}\text{B}$
- YCo_5
- SmCo_5
- $\text{Sm}_2\text{Co}_{17}$
- $\text{Sm}_2(\text{Co,Fe,Cu,Zr})_{17}$
Permanent Magnets and Fields

Permanent magnets can create external magnetic fields

The Earth's Magnetic Field
Magnetic Induction $B = \mu_0(1 + \chi)H$

<table>
<thead>
<tr>
<th>Source</th>
<th>Magnitude of B (Tesla)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A hair dryer</td>
<td>$\sim 10^{-7}$-10^{-3}</td>
</tr>
<tr>
<td>Earth's Magnetic Field</td>
<td>$\sim 5 \times 10^{-5}$</td>
</tr>
<tr>
<td>A small bar magnet</td>
<td>$\sim 10^{-2}$</td>
</tr>
<tr>
<td>At a sunspot</td>
<td>~ 0.3</td>
</tr>
<tr>
<td>MRI body scanner magnet</td>
<td>~ 2</td>
</tr>
<tr>
<td>Research Physics Labs</td>
<td>~ 50</td>
</tr>
<tr>
<td>At the surface of a neutron star</td>
<td>$\sim 10^8$</td>
</tr>
</tbody>
</table>
Electrical currents can be used to create magnetic fields

Biot-Savart Law
Electrical currents can be used to create magnetic fields

- a solenoid
- chime door bell
Electrical currents can be used to create magnetic fields

B field strength is proportional to the current in the wires.

The strength of the B field is limited by the maximum current: iR loss limits amount of current in wires.

What if R = 0? Superconductivity!

Pb is a superconductor at 7K. R=0. Electrons move as "Cooper Pairs".
High Temperature Superconductors (HTS)

"High" means 50K. Examples of high-T_c cuprate superconductors include $\text{La}_{1.85}\text{Ba}_{0.15}\text{CuO}_4$, and $\text{YBa}_2\text{Cu}_3\text{O}_7$ (Yttrium-Barium-Copper-Oxide or YBCO), which is famous as the first material to achieve superconductivity above the boiling point of liquid nitrogen (92K). And $\text{Bi}_2\text{Sr}_2\text{Ca}_2\text{Cu}_3\text{O}_{10}$ (BSCCO) which is superconductive at 110K.

$\text{YBa}_2\text{Cu}_3\text{O}_7$ (Yttrium-Barium-Copper-Oxide or YBCO)
High Temperature Superconductors (HTS)

Karl Müller and Johannes Bednorz received the 1987 Nobel Prize in Physics for HTS Superconductors, BUT:

“The question of how superconductivity arises in high-temperature superconductors is one of the major unsolved problems of theoretical condensed matter physics (as of 2011). The mechanism that causes the electrons in these crystals to form pairs is not known.”
Superconductivity Application: MagLev Trains

Shanghai Transrapid MagLev Train: 431 km/h (268 mph)
(Transrapid is a German Company)
Superconductivity Application: MagLev Trains

JR MagLev Train: 581 km/h (368 mph)
Halbach Arrays
Halbach Arrays

A Halbach array is a special arrangement of permanent magnets that augments the magnetic field on one side of the array while cancelling the field to near zero on the other side.

In the diagram, the magnetic field is enhanced on the top side and cancelled on the bottom side (a one-sided flux).

Halbach arrays are used on MagLev Trains
Stabilized Permanent Magnet (SPM) Suspension Technology

- **High-strength neodymium-iron-boron permanent magnets** arranged in opposing Halbach arrays (Figure 1) provide levitation with a gap-size of 3 - 8 cm at all speeds (no power requirement for levitation).

The polarities of individual magnets in the array (indicated by arrows) are arranged such that the fields reinforce each other on the "active" face, producing a very strong magnetic field. On the "inactive" face, the magnetic fields essentially cancel each other, leaving almost no field at all.

![Figure 1. Levitator Configuration](image)
Halbach Arrays

Halbach arrays are ALSO used in Refrigerator Magnets!