Thursday, February 7, 2019 - 1:00pm

CaSTL Seminar Series and the Center for Chemical Innovation presents: Luat T. Vuong - Chiral Scattering, Photo-induced Voltages and Forces in Achiral Plasmonic Systems

BIO: Luat has an undergraduate degree in Engineering Physics from UC Berkeley, and received her Ph.D. in Applied Physics at Cornell, studying optical vortex collapse and filamentation dynamics in Alexander L. Gaeta's Quantum and Nonlinear Photonics Group. With a Fulbright in 2007, she joined the Delft University of Technology Optics Group in the Netherlands, where she studied the near-field scattering in plasmonic structures.  She segued into research on nanostructured organic photovoltaics at ICFO- The Institute of Photonic Sciences in Spain with a European Commission MC-IIF Postdoctoral Fellowship. Luat is a 2012 recipient of the NSF Career Award and co-chair for a Gordon Research Conference that she has recently initiated, "Plasmonically Powered Processes", to take place next in Hong Kong, 2019. 

Abstract:

Today, our knowledge of the light-induced forces on small objects is relevant to research across many disciplines. The technology for optically trapping biological specimens is mature; however, the predictive control of the light-induced forces on metals or conducting nanomaterials has not yet been achieved.

Prof. Vuong will discuss the chiral scattering of light and the nonlinear Lorentz force in achiral plasmonic structures, which result in polarization-dependent nanoscale electrical potentials and mechanical forces. These forces significantly influence both microscale and macroscopic dynamics through the production of local voltages or forces, and may also influence hot electron effects. Professor Vuong's group provide experimental, theoretical, and new numerical results that demonstrate ultra-long-range self-assembly via plasmon-induced forces.  Their results are relevant to nascent models of plasmonically-powered processes.

Speaker: 

Luat T. Vuong

Institution: 

UC Riverside

Location: 

2201 Nat Sci II